Aakash Institute, Kolkata Centre
MATHEMATICS

MATHEMATICS				
Q.No.	A	B	C	D
01	D	C	D	A
02	B	A	C	B
03	B	B	C	B
04	C	D	A	A
05	B	B	C	C
06	B	D	A	B
07	B	D	A	A
08	D	A	A	C
09	D	C	B	D
10	B	D	A	C
11	A	A	B	B
12	B	C	B	A
13	C	C	A	B
14	A	A	C	B
15	D	C	D	B
16	D	A	A	B
17	B	A	C	D
18	C	B	B	A
19	D	B	C	D
20	A	A	B	B
21	D	C	A	D
22	C	B	B	C
23	A	A	B	B
24	C	C	D	D
25	C	D	B	B
26	A	A	D	C
27	A	A	A	B
28	A	B	C	B
29	A	C	B	B
30	B	B	D	D
31	B	B	D	D
32	A	B	B	B
33	C	A	B	A
34	B	D	B	B
35	A	B	C	C
36	C	D	D	A
37	D	D	B	D
38	B	C	B	D
39	A	B	A	B
40	B	B	D	C
41	C	D	B	D
42	B	C	A	A
43	B	B	B	D
44	D	B	C	C
45	A	B	B	A
46	D	D	D	C
47	B	B	D	A
48	B	B	A	C
49	D	A	C	A
50	C	D	D	A
51	A	D	D	D
52	C	C	B	C
53	C	B	B	B
54	D	D	D	A
55	B	B	D	D
56	B	A	C	B
57	D	D	B	D
58	B	D	A	B
59	A	C	B	C
60	D	B	B	A
61	D	D	D	D
62	D	B	A	C
63	B	B	C	B
64	D	C	C	B
65	B	A	D	D
66	C	A, B,C	C	B, D
67	B, C	C	A, C, D	A, D
68	B	C	A, D	C
69	C	A, C, D	B, D	B, C
70	A, B , C	C	B	B
71	C	B, D	C	C
72	C	A, D	B, C	A, B, C
73	A, C, D	B, C	C	C
74	A. D	B	C	A, C, D
75	B, D	C	A, B , C	C

(i)

Aakash

ANSWERS \& HINTS
 for
 WBJEE - 2022
 SUB : MATHEMATICS

CATEGORY - I (Q:1 to Q50)

(Carry 1 mark each. Only one option is correct. Negative marks - $1 / 4$)

1. Two circle $S_{1}=p x^{2}+p y^{2}+2 g^{\prime} x+2 f^{\prime} y+d=0$ and $S_{2}=x^{2}+y^{2}+2 g x+2 f y+d^{\prime}=0$ have a common chord PQ. The equation of $P Q$ is
(A) $\mathrm{S}_{1}-\mathrm{S}_{2}=0$
(B) $\mathrm{S}_{1}+\mathrm{S}_{2}=0$
(C) $\mathrm{S}_{1}-\mathrm{pS}_{2}=0$
(D) $\mathrm{S}_{1}+\mathrm{pS}_{2}=0$

Ans: (C)
Hint: $\frac{S_{1}}{p}-S_{2}=0 \Rightarrow S_{1}-\mathrm{pS}_{2}=0$
2. If the sum of the distances of a point from two perpendicular lines in a plane is 1 unit, then its locus is
(A) a square
(B) a circle
(C) a straight line
(D) two intersecting lines

Ans: (A)

Hint :

$|x|+|y|=1$
Locus is square
3. A line passes through the point $(-1,1)$ and makes an angle $\sin ^{-1}\left(\frac{3}{5}\right)$ in the positive direction of x-axis. If this line meets the curve $x^{2}=4 y-9$ at A and B, then $|A B|$ is equal to
(A) $\frac{4}{5}$ unit
(B) $\frac{5}{4}$ unit
(C) $\frac{3}{5}$ unit
(D) $\frac{5}{3}$ unit

Ans: (B)
Hint: $4 y-3 x=7$ and $x^{2}=4 y-9$

On solving, $x^{2}-3 x+2=0 \Rightarrow x=1,2$ and $y=\frac{5}{2}, \frac{13}{4}$
$A\left(1, \frac{5}{2}\right)$ and $B\left(2, \frac{13}{4}\right)$
$|A B|=\frac{5}{4}$
4. $A B$ is a chord of a parabola $y^{2}=4 a x,(a>0)$ with vertex A. $B C$ is drawn perpendicular to $A B$ meeting the axis at C. The projection of $B C$ on the axis of the parabola is
(A) a unit
(B) 2 a unit
(C) 8a unit
(D) 4a unit

Ans: (D)

Hint:

$\mathrm{B}\left(\mathrm{at}^{2}, 2 \mathrm{at}\right) \therefore \mathrm{D}\left(\mathrm{at}^{2}, 0\right)$
$\mathrm{m}_{\mathrm{AB}}=\frac{2 \mathrm{at}}{\mathrm{at}^{2}}=\frac{2}{\mathrm{t}} \therefore \mathrm{m}_{\mathrm{BC}}=-\frac{\mathrm{t}}{2}$
$\therefore \mathrm{y}-2 \mathrm{at}=-\frac{\mathrm{t}}{2}\left(\mathrm{x}-\mathrm{at}^{2}\right) \quad$ [Equation of BC]
for $y=0,-2 a t=-\frac{t}{2}\left(x-a t^{2}\right)=-\frac{t}{2} x+\frac{a t^{3}}{2}$
$\Rightarrow t x=4 a t+a^{3}$
$\Rightarrow \mathrm{x}=4 \mathrm{a}+\mathrm{at}^{2}$
$\therefore \mathrm{c}\left(4 \mathrm{a}+\mathrm{at}^{2}, 0\right)$
\therefore Projection of $B C$ on the axis is $D C=A C-A D=4 a+a t^{2}-a t^{2}=4 a$
5. Let $P(3 \sec \theta, 2 \tan \theta) Q(3 \sec \phi, 2 \tan \phi)$ be two points on $\frac{x^{2}}{9}-\frac{y^{2}}{4}=1$ such that $\theta+\phi=\frac{\pi}{2} .0<\theta, \phi<\frac{\pi}{2}$. Then the ordinate of the point of intersection of the normals at P and Q is
(A) $\frac{13}{2}$
(B) $-\frac{13}{2}$
(C) $\frac{5}{2}$
(D) $-\frac{5}{2}$

Ans: (B)
Hint: $\frac{a^{2} x}{x_{1}}+\frac{b^{2} y}{y_{1}}=a^{2}+b^{2}, P(3 \sec \theta, 2 \tan \theta)$
$\therefore \frac{9 x}{3 \sec \theta}+\frac{4 y}{2 \tan \theta}=9+4=13$
$\Rightarrow 3 \mathrm{x} \cos \theta+2 \mathrm{y} \cot \theta=13$

Similarly, $3 \mathrm{x} \cos \phi+2 \mathrm{y} \cot \phi=13$
$3 x \cos \left(\frac{\pi}{2}-\theta\right)+2 y \cot \left(\frac{\pi}{2}-\theta\right)=13$
$\Rightarrow 3 x \sin \theta+2 y \tan \theta=13$
$\therefore \frac{13-2 \mathrm{y} \cot \theta}{3 \cos \theta}=\frac{13-2 \mathrm{y} \tan \theta}{3 \sin \theta}$
$\Rightarrow 13 \sin \theta-2 y \cos \theta=13 \cos \theta-2 y \sin \theta$
$\Rightarrow 13 \tan \theta-2 y=13-2 y \tan \theta$
$\Rightarrow 13(\tan \theta-1)=-2 y(\tan \theta-1)$
$\therefore \mathrm{y}=-\frac{13}{2}$
\therefore Ordinate $=-\frac{13}{2}$
6. Let P be a point on $(2,0)$ and Q be a variable point on $(y-6)^{2}=2(x-4)$. Then the locus of mid-point of $P Q$ is
(A) $y^{2}+x+6 y+12=0$
(B) $y^{2}-x+6 y+12=0$
(C) $y^{2}+x-6 y+12=0$
(D) $y^{2}-x-6 y+12=0$

Ans: (D)
Hint : $P(2,0)$
$Q\left(4+\frac{1}{2} \mathrm{t}^{2}, 6+\mathrm{t}\right)$
Let midpoint of $P Q$ be $R(h, k)$
$\mathrm{h}=3+\frac{1}{4} \mathrm{t}^{2}, \mathrm{k}=3+\frac{\mathrm{t}}{2}$
$\Rightarrow(\mathrm{k}-3)^{2}=(\mathrm{h}-3)$
$\Rightarrow y^{2}-6 y-x+12=0$
7. The line $x-2 y+4 z+4=0, x+y+z-8=0$ intersect the plane $x-y+2 z+1=0$ at the point
(A) $(-2,5,1)$
(B) $(2,-5,1)$
(C) $(2,5,-1)$
(D) $(2,5,1)$

Ans: (D)
Hint : All other options are discarded
8. AB is a variable chord of the ellipse $\frac{x^{2}}{\mathrm{a}^{2}}+\frac{\mathrm{y}^{2}}{\mathrm{~b}^{2}}=1$. If AB subtends a right angle at the origin O , then $\frac{1}{\mathrm{OA}^{2}}+\frac{1}{\mathrm{OB}^{2}}$ equals to
(A) $\frac{1}{\mathrm{a}^{2}}+\frac{1}{\mathrm{~b}^{2}}$
(B) $\frac{1}{\mathrm{a}^{2}}-\frac{1}{\mathrm{~b}^{2}}$
(C) $a^{2}+b^{2}$
(D) $a^{2}-b^{2}$

Ans: (A)

Hint :

Aakash Educational Services Limited - Corp. Office: Aakash Tower, 8, Pusa Road, New Delhi-110005, Ph.: 011-47623456
9. The equation of the plane through the intersection of the planes $x+y+z=1$ and $2 x+3 y-z+4$ and parallel to the x-axis is
(A) $\mathrm{y}+3 \mathrm{z}+6=0$
(B) $y+3 z-6=0$
(C) $y-3 z+6=0$
(D) $y-3 z-6=0$

Ans: (C)
Hint : $(2 x+3 y-z+4)+\lambda(x y+z-1)=0$
$\overrightarrow{\mathrm{n}}=(2+\lambda) \hat{\mathrm{i}}+(3+\lambda) \hat{\mathrm{j}}+(-1+\lambda) \hat{k}$
$\vec{n} . \vec{i}=0 \Rightarrow \lambda=-2$
$\Rightarrow \mathrm{y}-3 \mathrm{z}+6=0$
10. The values of a, b, c for which the function $f(x)=\left\{\begin{array}{l}\frac{\sin (a+1) x+\sin x}{x}, x<0 \\ c, x=0 \\ \frac{\left(x+b x^{2}\right)^{1 / 2}-\sqrt{x}}{b x^{1 / 2}}, x>0\end{array}\right.$
is continuous at $x=0$, are
(A) $\mathrm{a}=\frac{3}{2}, \mathrm{~b}=-\frac{3}{2}, \mathrm{c}=\frac{1}{2}$
(B) $\mathrm{a}=-\frac{3}{2}, \mathrm{c}=\frac{3}{2}, \mathrm{~b}$ is arbitrary non-zero real number
(C) $\mathrm{a}=-\frac{5}{2}, \mathrm{~b}=-\frac{3}{2}, \mathrm{c}=\frac{3}{2}$
(D) $\mathrm{a}=-2, \mathrm{~b} \in \mathbb{R}-\{0\}, \mathrm{c}=0$

Ans: (D)
Hint: $f\left(0^{+}\right)=\operatorname{Lt}_{x \rightarrow 0^{+}} \frac{(1+b x)^{1 / 2}-1}{b}=0$
$f(0)=c$
$f\left(0^{-}\right)=a+2$
$\Rightarrow \mathrm{c}=0$ and $\mathrm{a}=-2, \mathrm{~b} \in \mathrm{R}-\{0\}$
11. If $y=e^{\tan ^{-1} x}$ then
(A) $\left(1+x^{2}\right) y_{2}+(2 x-1) y_{1}=0$
(B) $\left(1+x^{2}\right) y_{2}+2 x y=0$
(C) $\left(1+x^{2}\right) y_{2}-y_{1}=0$
(D) $\left(1+x^{2}\right) y_{2}+3 x y_{1}+4 y=0$

Ans: (A)
Hint: $\frac{d y}{d x}=e^{\tan ^{-1} x} \times \frac{1}{1+x^{2}}$

$$
\begin{aligned}
& \Rightarrow\left(1+x^{2}\right) y^{\prime}=y \\
& \text { or } 2 x y^{\prime}+\left(1+x^{2}\right) y^{\prime \prime}=y^{\prime} \\
& \text { or }\left(1+x^{2}\right) y^{\prime \prime}+y^{\prime}(2 x-1)=0
\end{aligned}
$$

12. Domain of $y=\sqrt{\log _{10} \frac{3 x-x^{2}}{2}}$ is
(A) $x<1$
(B) $2<x$
(C) $1 \leq x \leq 2$
(D) $2<x<3$

Ans: (C)
Hint: $\log _{10}\left(\frac{3 x-x^{2}}{2}\right) \geq 0$
or $\log _{10}\left(\frac{3 x-x^{2}}{2}\right) \geq \log _{10} 1$
or $x^{2}-3 x+2 \leq 0$
or $x \in[1,2]$ and $\frac{3 x-x^{2}}{2}>0$
$\Rightarrow \mathrm{x} \in[1,2]$
13. Let $f(x)=a_{0}+a_{1}|x|+a_{2}|x|^{2}+a_{3}|x|^{3}$, where $a_{0}, a_{1}, a_{2}, a_{3}$ are real constants. Then $f(x)$ is differentiable at $x=0$
(A) whatever be $a_{0}, a_{1}, a_{2}, a_{3}$
(B) for no values of $a_{0}, a_{1}, a_{2}, a_{3}$
(C) only if $a_{1}=0$
(D) only if $a_{1}=0, a_{3}=0$

Ans: (C)
Hint: $f^{\prime}\left(0^{+}\right)=\lim _{x \rightarrow 0}\left(a_{1}+2 a_{1} x+3 a_{3} x^{2}\right)=a_{1}$

$$
\begin{aligned}
& f^{\prime}\left(0^{-}\right)=\lim _{x \rightarrow 0}\left(-a_{1}+2 a_{1} x-3 a_{3} x^{2}\right)=-a_{1} \\
& f^{\prime}\left(0^{+}\right)=f^{\prime}\left(0^{-}\right) \quad \Rightarrow a_{1}=0
\end{aligned}
$$

14. Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous in $[a, b]$, differentiable in (a, b) and $f(a)=0=f(b)$. Then
(A) there exists at least one point $c \in(a, b)$ for which $f^{\prime}(c)=f(c)$
(B) $f^{\prime}(x)=f(x)$ does not hold at any point of (a, b)
(C) at every point of $(a, b), f^{\prime}(x)>f(x)$
(D) at every point of $(a, b), f^{\prime}(x)<f(x)$

Ans: (A)
Hint: Let $g(x)=e^{-x} f(x)$
$g(a)=g(b)=0$
By Rolle's theorem, for atleast one $c \in(a, b)$ where

$$
\begin{aligned}
& g^{\prime}(c)=0 \\
& \text { or } e^{-c} f^{\prime}(c)-f(c) e^{-c}=0 \\
& \text { or } e^{-c}\left(f^{\prime}(c)-f(c)\right)=0 \\
& \text { or } f^{\prime}(c)=f(c) \quad \text { for atleast one } c \in(a, b)
\end{aligned}
$$

15. $\lim _{x \rightarrow 0}\left(\frac{1}{x} \ln \sqrt{\frac{1+x}{1-x}}\right)$ is
(A) $1 / 2$
(B) 0
(C) 1
(D) does not exist

Ans: (C)

Hint: $\lim _{x \rightarrow 0} \frac{1 / 2(\ln (1+x)-\ln (1-x))}{x}$

$$
=\frac{1}{2} \lim _{x \rightarrow 0}\left(\frac{1}{1+x}+\frac{1}{1-x}\right)=1
$$

16. Let f be derivable in $[0,1]$, then
(A) there exists $c \in(0,1)$ such that $\int_{0}^{c} f(x) d x=(1-c) f(c)$
(B) there does not exist any point $d \in(0,1)$ for which $\int_{0}^{d} f(x) d x=(1-d) f(d)$
(C) $\int_{0}^{c} f(x) d x$ does not exist, for any $c \in(0,1)$
(D) $\int_{0}^{c} f(x) d x$ is independent of $c, c \in(0,1)$

Ans: (A)
Hint: Let $g(x)=x \int_{0}^{x} f(t) d t-\int_{0}^{x} f(t) d t$
Now, $g(0)=0$

$$
g(1)=0
$$

By Rolle's Theorem

$$
g^{\prime}(x)=0 \quad \text { for some } x \in(0,1)
$$

$$
g^{\prime}(x)=x f(x)+\int_{0}^{x} f(t) d t-f(x)=0
$$

17. $\mathrm{I}=\int \cos (\ln \mathrm{x}) \mathrm{dx}$. Then $\mathrm{I}=$
(A) $\frac{x}{2}\{\cos (\ln x)+\sin (\ln x)\}+c$
(B) $x^{2}\{\cos (\ln x)-\sin (\ln x)\}+c$
(C) $x^{2} \sin (\ln x)+c$
(D) $x \cos (\ln x)+c$

Ans: (A)
Hint : $\int \cos (\ln (x)) d x=x \cdot \cos (\ln x)-\int(-\sin (\ln x)) \times 1 / x(x) d x$

$$
\begin{aligned}
& =x \cos (\ln x)+\int \sin (\ln x) d x \\
& =x \cos (\ln x)+x \sin (\ln x)-\int \cos (\ln x) d x
\end{aligned}
$$

18. Let $\lim _{\epsilon \rightarrow 0^{+}} \int_{\epsilon}^{x} \frac{b t \cos 4 t-a \sin 4 t}{t^{2}} d t=\frac{a \sin 4 x}{x}-1,(0<x<\pi / 4)$. Then a and b are given by
(A) $a=2, b=2$
(B) $a=1 / 4, b=1$
(C) $a=-1, b=4$
(D) $a=2, b=4$

Ans: (B)

Hint: Let $g(x)=\lim _{\epsilon \rightarrow 0} \int_{\epsilon}^{x} \frac{b t \cos 4 t-a \sin 4 t}{t^{2}} d t=\frac{a \sin 4 x}{x}-1$

$$
\begin{aligned}
& \lim _{x \rightarrow 0} g(x)=0=4 a-1 \quad \Rightarrow a=1 / 4 \\
& g^{\prime}(x)=\frac{b x \cos 4 x-a \sin 4 x}{x^{2}}
\end{aligned}
$$

Comparing, $b=4 a=1$
19. Let $\int \frac{x^{1 / 2}}{\sqrt{1-x^{3}}} d x=\frac{2}{3} g(f(x))+c$; then
(A) $f(x)=\sqrt{x}, g(x)=x^{3 / 2}$
(B) $f(x)=x^{3 / 2}, g(x)=\sin ^{-1} x$
(C) $f(x)=\sqrt{x}, g(x)=\sin ^{-1} x$
(D) $f(x)=\sin ^{-1} x, g(x)=x^{3 / 2}$

Ans: (B)
Hint : $\int \frac{x^{1 / 2} d x}{\sqrt{1-\left(x^{3 / 2}\right)^{2}}}=2 / 3 \int \frac{d t}{\sqrt{1-t^{2}}}$

$$
\mathrm{x}^{3 / 2}=\mathrm{t}
$$

$$
3 / 2 x^{1 / 2} d x=d t
$$

$$
=2 / 3 \sin ^{-1}(t)+c
$$

$$
=2 / 3 \sin ^{-1}\left(x^{3 / 2}\right)+c
$$

20. The value of $\int_{0}^{\pi / 2} \frac{(\cos x)^{\sin x}}{(\cos x)^{\sin x}+(\sin x)^{\cos x}} d x$ is
(A) $\pi / 4$
(B) 0
(C) $\pi / 2$
(D) $1 / 2$

Ans: (A)
Hint : $I=\int_{0}^{\pi / 2} \frac{(\cos x)^{\sin x}}{(\cos x)^{\sin x}+(\sin x)^{\cos x}} d x$

$$
\begin{aligned}
& I=\int_{0}^{\pi / 2} \frac{(\sin x)^{\cos x} d x}{(\sin x)^{\cos x}+(\cos x)^{\sin x}} \\
& \Rightarrow 2 I=\pi / 2 \\
& \Rightarrow I=\pi / 4
\end{aligned}
$$

21. A curve passes through the point $(3,2)$ for which the segment of the tangent line contained between the co-ordinate axes is bisected at the point of contact. The equation of the curve is
(A) $y=x^{2}-7$
(B) $\mathrm{x}=\frac{\mathrm{y}^{2}}{2}+2$
(C) $x y=6$
(D) $x^{2}+y^{2}-5 x+7 y+11=0$

Ans: (C)
Hint: $\frac{x}{x_{1}}+\frac{y}{y_{1}}=2$
$\because\left(\frac{d y}{d x}\right)_{\left(x_{1}, y_{1}\right)}=-\frac{\mathrm{y}_{1}}{\mathrm{x}_{1}}$
$\therefore \frac{d y}{d x}=-\frac{y}{x} \Rightarrow \frac{d y}{y}=-\frac{d x}{x} \Rightarrow \ln y=-\ln x+k \Rightarrow \ln x y=k \Rightarrow x y=e^{k}=C \Rightarrow x y=C$ passes through $(3,2)$
$\therefore C=3 \times 2=6 \therefore x y=6$
22. Let $f(x)=\int_{\sin x}^{\cos x} e^{-t^{2}} d t$. Then $f^{\prime}\left(\frac{\pi}{4}\right)$ equals
(A) $\sqrt{1 / e}$
(B) $-\sqrt{2 / e}$
(C) $\sqrt{2 / e}$
(D) $-\sqrt{1 / e}$

Ans: (B)
Hint: $f^{\prime}(x)=-e^{-\cos ^{2} x} \sin x-e^{-\sin ^{2} x} \cos x$
$\therefore \mathrm{f}^{\prime}\left(\frac{\pi}{4}\right)=-\mathrm{e}^{-\frac{1}{2}} \frac{1}{\sqrt{2}}-\mathrm{e}^{-\frac{1}{2}} \frac{1}{\sqrt{2}}=-\frac{2}{\sqrt{2 \mathrm{e}}}=-\sqrt{\frac{2}{\mathrm{e}}}$
23. If $x \frac{d y}{d x}+y=x \frac{f(x y)}{f^{\prime}(x y)}$, then $|f(x y)|$ is equal to
(A) $\mathrm{Ce}^{\mathrm{x}^{2} / 2}$
(B) $\mathrm{Ce}^{\mathrm{x}^{2}}$
(C) $\mathrm{Ce}^{2 \mathrm{x}^{2}}$
(D) $\mathrm{Ce}^{\mathrm{x}^{2} / 3}$
where C is the constant of integration
Ans: (A)
Hint: $x \frac{d y}{d x}+y=x \frac{f(x y)}{f^{\prime}(x y)} \Rightarrow \frac{d(x y)}{d x}=x \frac{f(x y)}{f^{\prime}(x y)} \Rightarrow \frac{f^{\prime}(x y)}{f(x y)} d(x y)=x d x \Rightarrow \ln |f(x y)|=\frac{x^{2}}{2}+k \Rightarrow f(x y)=C e^{\frac{x^{2}}{2}}$
24. Let $f(x)=(x-2)^{17}(x+5)^{24}$. Then
(A) f does not have a critical point at $x=2$
(B) f has a minimum at $x=2$
(C) f has neither a maximum nor a minimum at $x=2$
(D) f has a maximum at $x=2$

Ans: (C)
Hint : $f(x)=(x-2)^{17}(x+5)^{24}$
$\Rightarrow f^{\prime}(x)=17(x-2)^{16}(x+5)^{24}+24(x-2)^{17}(x+5)^{23}=(x-2)^{16}(x+5)^{23}(17 x+85+24 x-48)=(x-2)^{16}(x+5)^{23}(41 x+37)$

$+$	-	+	$+$
-5	$-\frac{3}{1}$		$2 \downarrow$
			No si $\Rightarrow f(x)$ nora

25. The solution of $\cos y \frac{d y}{d x}=e^{x+\sin y}+x^{2} e^{\sin y}$ is $f(x)+e^{-\sin y}=C(C$ is arbitrary real constant $)$ where $f(x)$ is equal to
(A) $e^{x}+\frac{1}{2} x^{3}$
(B) $\quad e^{-x}+\frac{1}{3} x^{3}$
(C) $e^{-x}+\frac{1}{2} x^{3}$
(D) $\mathrm{e}^{\mathrm{x}}+\frac{1}{3} \mathrm{x}^{3}$

Ans: (D)
Hint : $-e^{-\sin y} \cos y \frac{d y}{d x}=-\left[e^{x}+x^{2}\right] \Rightarrow d\left(e^{-\sin y}\right)+\left(e^{x}+x^{2}\right) d x=0 \Rightarrow e^{-\sin y}+e^{x}+\frac{x^{3}}{3}=C$
26. The point of contact of the tangent to the parabola $y^{2}=9 x$ which passes through the point $(4,10)$ and makes an angle θ with the positive side of the axis of the parabola where $\tan \theta>2$, is
(A) $\left(\frac{4}{9}, 2\right)$
(B) $(4,6)$
(C) $(4,5)$
(D) $\left(\frac{1}{4}, \frac{1}{6}\right)$

Ans: (A)
Hint: $\tan \theta=\frac{1}{\mathrm{t}}>2$
Equation of tangent at t
$y t=x+\frac{9}{4} t^{2}($ passes through $(4,10)) \Rightarrow 10 t=4+\frac{9}{4} t^{2} \Rightarrow 9 t^{2}-40 t+16=0 \Rightarrow t=4, \frac{4}{9}\left(\frac{1}{t}>2\right) \Rightarrow t=\frac{4}{9}$
\therefore point $\left(\mathrm{at}^{2}, 2 \mathrm{at}\right) \Rightarrow\left(\frac{4}{9}, 2\right)$
27. A particle moving in a straight line starts from rest and the acceleration at any time t is $a-k t^{2}$ where a and k are positive constants. The maximum velocity attained by the particle is
(A) $\frac{2}{3} \sqrt{a^{3} / k}$
(B) $\frac{1}{3} \sqrt{a^{3} / k}$
(C) $\sqrt{a^{3} / k}$
(D) $2 \sqrt{a^{3} / k}$

Ans: (A)
Hint : $\frac{d v}{d t}=a-k t^{2}=(\sqrt{a}-\sqrt{k} t)(\sqrt{a}+\sqrt{k} t)[\because a, k>0]$

v will be max at $t=\sqrt{\frac{a}{k}}$
$\because v=a t-\frac{k}{3} t^{3}+C$
at $t=0, v=0 \Rightarrow C=0$
$\therefore v=a t-\frac{k}{3} t^{3}$

$$
\begin{aligned}
\therefore v_{\max } & =a \sqrt{\frac{a}{k}}-\frac{k}{3} \frac{a}{k} \sqrt{\frac{a}{k}} \\
& =\frac{2 a}{3} \sqrt{\frac{a}{k}}
\end{aligned}
$$

28. If $\vec{a}=\hat{i}+\hat{j}-\hat{k}, \vec{b}=\hat{i}-\hat{j}+\hat{k}$ and \vec{c} is unit vector perpendicular to \vec{a} and coplanar with \vec{a} and \vec{b}, then unit vector \vec{d} perpendicular to both \vec{a} and \vec{c} is
(A) $\pm \frac{1}{\sqrt{6}}(2 \hat{i}-\hat{j}+\hat{k})$
(B) $\pm \frac{1}{\sqrt{2}}(\hat{j}+\hat{k})$
(C) $\pm \frac{1}{\sqrt{6}}(\hat{i}-2 \hat{j}+\hat{k})$
(D) $\pm \frac{1}{\sqrt{2}}(\hat{\mathrm{j}}-\hat{\mathrm{k}})$

Ans: (B)
Hint $: \because \vec{d}$ is normal to the plane of \vec{a} and \vec{b}
$\vec{a} \times \vec{b}$ or $\vec{b} \times \vec{a}= \pm 2(\hat{j}+\hat{k}) \therefore$ unit vector $\vec{d}= \pm \frac{1}{\sqrt{2}}(\hat{j}+\hat{k})$
29. If the equation of one tangent to the circle with centre at $(2,-1)$ from the origin is $3 x+y=0$, then the equation of the other tangent through the origin is
(A) $3 x-y=0$
(B) $x+3 y=0$
(C) $x-3 y=0$
(D) $x+2 y=0$

Ans: (C)

Hint :

$\because C A=C B$
$\Rightarrow \frac{5}{\sqrt{10}}=\left|\frac{2 m+1}{\sqrt{1+\mathrm{m}^{2}}}\right|$
squaring
5
$\frac{25}{\substack{10}}=\frac{4 m^{2}+4 m+1}{1+m^{2}}$
$\Rightarrow 5+5 \mathrm{~m}^{2}=8 \mathrm{~m}^{2}+8 \mathrm{~m}+2 \Rightarrow 3 \mathrm{~m}^{2}+8 \mathrm{~m}-3=0 \Rightarrow \mathrm{~m}=\frac{1}{3},-3$
\therefore Equation of tangent OB is $\mathrm{y}=\frac{\mathrm{x}}{3}$
30. Area of the figure bounded by the parabola $y^{2}+8 x=16$ and $y^{2}-24 x=48$ is
(A) $\frac{11}{9}$ sq. unit
(B) $\frac{32}{3} \sqrt{6}$ sq. unit
(C) $\frac{16}{3}$ sq. unit
(D) $\frac{24}{5}$ sq. unit

Ans: (B)

Hint : $y^{2}=-8(x-2)$

$$
\begin{equation*}
y^{2}=24(x+2)----(2) \tag{1}
\end{equation*}
$$

Solving (1) and (2) $\Rightarrow x=-1$
Area $=2\left[\int_{-2}^{-1} 2 \sqrt{6} \sqrt{x+2} d x+\int_{-1}^{2} 2 \sqrt{2} \sqrt{2-x} d x\right]=\frac{32}{3} \sqrt{6}$ sq. unit

31. Let $a_{n}=\left(1^{2}+2^{2}+\ldots . n^{2}\right)^{n}$ and $b_{n}=n^{n}(n!)$. Then
(A) $\mathrm{a}_{\mathrm{n}}<\mathrm{b}_{\mathrm{n}} \forall \mathrm{n}$
(B) $\mathrm{a}_{\mathrm{n}}>\mathrm{b}_{\mathrm{n}} \forall \mathrm{n}$
(C) $a_{n}=b_{n}$ for infinitely many n
(D) $a_{n}<b_{n}$ if n be even and $a_{n}>b_{n}$ if n be odd

Ans: (B)
Hint: Using PMI $\quad a_{n}>b_{n} \quad\left[* a_{n}>b_{n} \forall n \geq 2\right.$ as $\left.a_{1}=b_{1}\right]$
32. If a, b, c are in G. P. and $\log a$. $-\log 2 b, \log 2 b-\log 3 c, \log 3 c-\log a$ are in A. P., then a, b, c are the lengths of the sides of a triangle which is
(A) acute angled
(B) obtuse angled
(C) right angled
(D) equilateral

Ans: (B)
Hint: $\because 2 \log \frac{2 b}{3 c}=\log \frac{a}{2 b}+\log \frac{3 c}{a} \Rightarrow \frac{4 b^{2}}{9 c^{2}}=\frac{3 c}{2 b} \Rightarrow 2 b=3 c \Rightarrow \frac{c}{b}=\frac{2}{3}$ (common ratio)
\therefore Sides are $a, \frac{2 a}{3}, \frac{4 a}{9}$
Using Cosine rule
$\Rightarrow \cos \mathrm{A}<0 \Rightarrow$ obteuse angled tiangle
33. If a, b are odd integers, then the roots of the equation $2 a x^{2}+(2 a+b) x+b=0, a \neq 0$ are
(A) rational
(B) irrational
(C) non-real
(D) equal

Ans: (A)
Hint: Dise is a perfect square \Rightarrow Rational roots
34. The number of zeros at the end of 100 is
(A) 21
(B) 22
(C) 23
(D) 24

Ans: (D)
Hint: $E_{5}(100!)=\left[\frac{100}{5}\right]+\left[\frac{100}{25}\right]+\left[\frac{100}{125}\right]=20+4+0=24$
35. If $|z-25 i| \leq 15$, then Maximum $\arg (z)-$ Minimum $\arg (z)$ is equal to
(A) $2 \cos ^{-1}\left(\frac{3}{5}\right)$
(B) $2 \cos ^{-1}\left(\frac{4}{5}\right)$
(C) $\frac{\pi}{2}+\cos ^{-1}\left(\frac{3}{5}\right)$
(D) $\sin ^{-1}\left(\frac{3}{5}\right)-\cos ^{-1}\left(\frac{3}{5}\right)$

Ans: (B)

Hint:

$\because \cos \theta=\frac{15}{25}=\frac{3}{5}$
\therefore Min $\arg (z)=\cos ^{-1}\left(\frac{3}{5}\right)$
$\operatorname{Max} \arg (z)=\pi-\cos ^{-1}\left(\frac{3}{5}\right)=\frac{\pi}{2}+\sin ^{-1}\left(\frac{3}{5}\right)$
\therefore difference $=\frac{\pi}{2}+\sin ^{-1}\left(\frac{3}{5}\right)-\cos ^{-1}\left(\frac{3}{5}\right)=2 \sin ^{-1}\left(\frac{3}{5}\right)=2 \cos ^{-1}\left(\frac{4}{5}\right)$
36. If $z=x$ - iy and $z^{1 / 3}=p+i q(x, y, p, q \in \mathbb{R})$, then $\frac{\left(\frac{x}{p}+\frac{y}{q}\right)}{\left(p^{2}+q^{2}\right)}$ is equal to
(A) 2
(B) -1
(C) 1
(D) -2

Ans: (D)
Hint: $z=p^{3}-3 p q^{2}+i\left(3 p^{2} q-q^{3}\right)=x-i y$
$\mathrm{x}=\mathrm{p}\left(\mathrm{p}^{2}-3 \mathrm{q}^{2}\right)$
$y=-q\left(3 p^{2}-q^{2}\right)$
$\therefore \frac{\mathrm{x}}{\mathrm{p}}+\frac{\mathrm{y}}{\mathrm{q}}=\mathrm{p}^{2}-3 \mathrm{q}^{2}-3 \mathrm{p}^{2}+\mathrm{q}^{2}=-2\left(\mathrm{p}^{2}+\mathrm{q}^{2}\right)$
37. A is a set containing n elements. P and Q are two subsets of A. Then the number of ways of choosing P and Q so that $P \cap Q=\varphi$ is
(A) $\quad 2^{2 n 2 n} C_{n}$
(B) $\quad 2^{n}$
(C) $3^{n}-1$
(D) 3^{n}

Ans: (D)
Hint : $\sum_{r=0}^{n}{ }^{n} C_{r} \cdot 2^{n-r}=(2+1)^{n}=3^{n}$ (Assuming P contains r elements then Q can be formed with $n-r$ elements in 2^{n-r} ways)
38. There are n white and n black balls marked $1,2,3, \ldots . n$. The number of ways in which we can arrange these balls in a row so that neighbouring balls are of different colours is
(A) $(n!)^{2}$
(B) (2n)!
(C) $2(n!)^{2}$
(D) $\frac{(2 n)!}{(n!)^{2}}$

Ans: (C)
Hint: BW BW $=n!\times n$!

$$
\begin{gathered}
\text { or } \\
\text { WB WB } \ldots \ldots=2(n!)^{2}
\end{gathered}
$$

39. Let $f(n)=2^{n+1}, g(n)=1+(n+1)^{2 n}$ for all $n \in \mathbb{N}$. Then
(A) $f(n)>g(n)$
(B) $f(n)<g(n)$
(C) $f(n)$ and $g(n)$ are not comparable
(D) $f(n)>g(n)$ if n be even and $f(n)<g(n)$ if n be odd

Ans: (B)

Hint: $g(n)-f(n)=1+(n+1) 2^{n}-2.2^{n}=1+n .2^{n}-2^{n}=1+(n-1) 2^{n}>0$
$\because \mathrm{n} \geq 1 \Rightarrow(\mathrm{n}-1) \geq 0$
40. If $\Delta(x)=\left|\begin{array}{ccc}x-2 & (x-1)^{2} & x^{3} \\ x-1 & x^{2} & (x+1)^{3} \\ x & (x+1)^{2} & (x+2)^{3}\end{array}\right|$, then coefficient of x in $\Delta(x)$ is
(A) 2
(B) $\quad-2$
(C) 3
(D) -4

Ans: (B)
Hint : co-eff of x in $\Delta(x)=\frac{\Delta^{\prime}(0)}{1!}=-2$
41. Under which of the following condition(s) does(do) the system of equations $\left(\begin{array}{llc}1 & 2 & 4 \\ 2 & 1 & 2 \\ 1 & 2 & (a-4)\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}6 \\ 4 \\ a\end{array}\right)$ possesses (possess) unique solution?
(A) $\forall a \in R$
(B) $a=8$
(C) for all integral values of a
(D) $a \neq 8$

Ans: (D)
Hint : $\Delta \neq 0$
$\Rightarrow\left|\begin{array}{ccc}1 & 2 & 4 \\ 2 & 1 & 2 \\ 1 & 2 & a-4\end{array}\right| \neq 0 \Rightarrow a \neq 8$
42. Let S, T, U be three non-void sets and $f: S \rightarrow T, g: T \rightarrow U$ and composed mapping $g . f: S \rightarrow U$ be defined. Let g. f be injective mapping. Then
(A) f, g both are injective.
(B) neither f nor g is injective.
(C) fis obviously injective.
(D) g is obviously injective.

Ans: (C)
Hint: Let, $x_{1}, x_{2} \in S$ and $f\left(x_{1}\right)=f\left(x_{2}\right)$
$\Rightarrow \operatorname{gof}\left(x_{1}\right)=g\left(f\left(x_{1}\right)\right)=g\left(f\left(x_{2}\right)\right)=\operatorname{gof}\left(x_{2}\right)$
$\Rightarrow x_{1}=x_{2}$ (as gof is injective)
$\Rightarrow f(x)$ is obviously injective.
43. If $p=\left[\begin{array}{lll}1 & \alpha & 3 \\ 1 & 3 & 3 \\ 2 & 4 & 4\end{array}\right]$ is the adjoint of the 3×3 matrix A and $\operatorname{det} A=4$, then α is equal to
(A) 4
(B) 11
(C) 5
(D) 0

Ans: (B)
Hint: $|p|=2 \alpha-6=(\operatorname{det} A)^{2}=16$
$\Rightarrow \alpha=11$
44. If $A=\left(\begin{array}{ll}1 & 1 \\ 0 & i\end{array}\right)$ and $A^{2018}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, then ($\left.a+d\right)$ equals
(A) $1+i$
(B) 0
(C) 2
(D) 2018

Ans: (B)
Hint : $A^{2}=\left(\begin{array}{cc}1 & 1+i \\ 0 & -1\end{array}\right), A^{3}=\left(\begin{array}{cc}1 & i \\ 0 & -i\end{array}\right), A^{4}=l$
$\therefore \mathrm{A}^{2018}=\mathrm{A}^{2016} \times \mathrm{A}^{2}=\mathrm{A}^{2}=\left(\begin{array}{cc}1 & 1+\mathrm{i} \\ 0 & -1\end{array}\right)$
$\therefore a+d=1+(-1)=0$
45. A determinant is chosen at random from the set of all determinants of order 2 with elements 0 or 1 only. The probability that the determinant chosen is non-zero is
(A) $\frac{3}{16}$
(B) $\frac{3}{8}$
(C) $\frac{1}{4}$
(D) $\frac{5}{8}$

Ans: (B)
Hint : $\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|=a d-b c=0$
Case 1: $a d=b c=0 \rightarrow 3 \times 3=9$ cases
Case 2 : $a d=b c=1 \rightarrow 1$ case only
\therefore Probability $=1-\frac{9+1}{2^{4}}=\frac{3}{8}$
46. For the mapping $\mathrm{f}: \mathbb{R}-\{1\} \rightarrow \mathbb{R}-\{2\}$, given by $f(x)=\frac{2 x}{x-1}$, which of the following is correct?
(A) fis one-one but not onto
(B) fis onto but not one-one
(C) f is neither one-one nor onto
(D) fis both one-one and onto

Ans: (D)
Hint: $f(x)=\frac{2 x}{x-1} \Rightarrow f^{\prime}(x)=\frac{-2}{(x-1)^{2}}<0$
$\therefore \mathrm{f}(\mathrm{x})$ is one-one
Let, $y_{1} \in \mathbb{R}-\{2\}$ and $f\left(x_{1}\right)=y_{1}$
Then, $\mathrm{y}_{1}=\frac{2 \mathrm{x}_{1}}{\mathrm{x}_{1}-1} \Rightarrow \mathrm{x}_{1}=\frac{\mathrm{y}_{1}}{\mathrm{y}_{1}-2} \in \mathbb{R}-\{1\}$
$\therefore \mathrm{f}(\mathrm{x})$ is onto.
47. A, B, C are mutually exclusive events such that $P(A)=\frac{3 x+1}{3}, P(B)=\frac{1-x}{4}$ and $P(C)=\frac{1-2 x}{2}$. Then the set of possible values of x are in
(A) $[0,1]$
(B) $\left[\frac{1}{3}, \frac{1}{2}\right]$
(C) $\left[\frac{1}{3}, \frac{2}{3}\right]$
(D) $\left[\frac{1}{3}, \frac{13}{3}\right]$

Ans: (B)
Hint : $0 \leq P(A)+P(B)+P(C) \leq 1$ and $0 \leq P(A) \leq 1,0 \leq P(B) \leq 1,0 \leq P(C) \leq 1 \Rightarrow \frac{1}{3} \leq x \leq \frac{1}{2}$
48. The side $A B$ of $\triangle A B C$ is fixed and is of length $2 a$ unit. The vertex moves in the plane such that the vertical angle is always constant and is α. Let x-axis be along $A B$ and the origin be at A. Then the locus of the vertex is
(A) $x^{2}+y^{2}+2 a x \sin \alpha+a^{2} \cos \alpha=0$
(B) $x^{2}+y^{2}-2 a x-2 a y \cot \alpha=0$
(C) $x^{2}+y^{2}-2 a x \cos \alpha-a^{2}=0$
(D) $x^{2}+y^{2}-a x \sin \alpha-a y \cos \alpha=0$

Ans: (B)
Hint:

$$
\begin{aligned}
& \text { Let, } c=z=x+i y \\
& \arg \left(\frac{2 a-z}{0-z}\right)=\alpha \\
& \Rightarrow \arg \left(\frac{(x-2 a)+i y}{x+i y}\right)=\alpha \\
& \Rightarrow x^{2}+y^{2}-2 a x-2 a y \cot \alpha=0
\end{aligned}
$$

49. If $\left(\cot \alpha_{1}\right)\left(\cot \alpha_{2}\right) \ldots \ldots\left(\cot \alpha_{n}\right)=1,0<\alpha_{1}, \alpha_{2}, \ldots . \alpha_{n}<\pi / 2$, then the maximum value of $\left(\cos a_{1}\right)\left(\cos \alpha_{2}\right) \ldots \ldots$. $\left(\cos \alpha_{n}\right)$ is given by
(A) $\frac{1}{2^{n / 2}}$
(B) $\frac{1}{2^{n}}$
(C) $\frac{1}{2 n}$
(D) 1

Ans: (A)
Hint : $\frac{1}{\left(\cos \alpha_{1} \cos \alpha_{2} \ldots \ldots \cos \alpha_{n}\right)^{2}}$
$=\left(1+\tan ^{2} \alpha_{1}\right)\left(1+\tan ^{2} \alpha_{2}\right) \ldots \ldots\left(1+\tan ^{2} \alpha_{n}\right)$
$\geq\left(2 \tan \alpha_{1}\right)\left(2 \tan \alpha_{2}\right) \ldots \ldots\left(2 \tan \alpha_{\mathrm{n}}\right)$ [AM -GM inequality]
$=2^{n} \times \frac{1}{\cot \alpha_{1} \cot \alpha_{2} \ldots . \cot \alpha_{n}}=2^{n}$
$\therefore \cos \alpha_{1} \cos \alpha_{2} \ldots \ldots \cos \alpha_{n} \leq \frac{1}{2^{n / 2}}$
50. If the algebraic sum of the distances from the points $(2,0),(0,2)$ and $(1,1)$ to a variable straight line be zero, then the line passes through the fixed point
(A) $(-1,1)$
(B) $(1,-1)$
(C) $(-1,-1)$
(D) $(1,1)$

Ans: (D)
Hint: $\left(\frac{2+0+1}{3}, \frac{0+2+1}{3}\right)$ i.e. $(1,1)$.

CATEGORY - II (Q51 to Q65)

(Carry 2 marks each. Only one option is correct. Negative marks: $1 / 2$)

51. $P Q$ is a double ordinate of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ such that $\triangle O P Q$ is an equilateral triangle, O being the centre of the hyperbola. Then the eccentricity e of the hyperbola satisfies
(A) $1<\mathrm{e}<2 / \sqrt{3}$
(B) $\mathrm{e}=2 / \sqrt{3}$
(C) $\quad e=2 \sqrt{3}$
(D) $\quad e>2 / \sqrt{3}$

Ans: (D)
Hint : $\tan 30^{\circ}=\frac{b \tan \theta}{a \sec \theta}$
$\Rightarrow \frac{\mathrm{b}}{\mathrm{a}}=\frac{1}{\sin \theta \sqrt{3}}$
$e=\sqrt{1+\frac{1}{3 \sin ^{2} \theta}}>\sqrt{1+\frac{1}{3}}$

$\Rightarrow e>\frac{2}{\sqrt{3}}\left(0<\sin ^{2} \theta<1\right)$
52. Let f be a non-negative function defined in $[0, \pi / 2]$, f^{\prime} exists and be continuous for all x and $\int_{0}^{x} \sqrt{1-\left(f^{\prime}(t)\right)^{2}} d t=\int_{0}^{x} f(t) d t$ and $f(0)=0$. Then
(A) $\mathrm{f}\left(\frac{1}{2}\right)<\frac{1}{2}$ and $\mathrm{f}\left(\frac{1}{3}\right)>\frac{1}{3}$
(B) $\mathrm{f}\left(\frac{1}{2}\right)>\frac{1}{2}$ and $\mathrm{f}\left(\frac{1}{3}\right)<\frac{1}{3}$
(C) $\mathrm{f}\left(\frac{4}{3}\right)<\frac{4}{3}$ and $\mathrm{f}\left(\frac{2}{3}\right)<\frac{2}{3}$
(D) $f\left(\frac{4}{3}\right)>\frac{4}{3}$ and $f\left(\frac{2}{3}\right)>\frac{2}{3}$

Ans: (C)
Hint : $\int_{0}^{x} \sqrt{1-\left(f^{\prime}(t)\right)^{2}} d t=\int_{0}^{x} f(t) d t$
Using Leibnitz Rule,

$$
\sqrt{1-\left(f^{\prime}(x)\right)^{2}}=f(x)
$$

$\therefore \mathrm{f}^{\prime}(\mathrm{x})= \pm \sqrt{1-\mathrm{f}^{2}(\mathrm{x})} \Rightarrow \int \frac{\mathrm{df}(\mathrm{x})}{\sqrt{1-\mathrm{f}^{2}(\mathrm{x})}}= \pm \int \mathrm{dx}$
$\sin ^{-1}(f(x))= \pm x+c$
$\therefore \mathrm{f}(\mathrm{x})=\sin (\pm \mathrm{x}+\mathrm{C})$
$\because f(0)=0 \Rightarrow C=0$
$\therefore \mathrm{f}(\mathrm{x})=\sin \mathrm{x}$ or $-\sin \mathrm{x}$
But f is non-negative on $[0, \pi / 2]$
$\therefore f(x)=\operatorname{Sin} x$
$\because f(x)<x$ for all $x>0$
$\therefore \mathrm{f}\left(\frac{4}{3}\right)<\frac{4}{3}$ and $\mathrm{f}\left(\frac{2}{3}\right)<\frac{2}{3}$
53. If the transformation $z=\log \tan \frac{x}{2}$ reduces the differential equation $\frac{d^{2} y}{d x^{2}}+\cot x \frac{d y}{d x}+4 y \operatorname{cosec}^{2} x=0$ into the form $\frac{d^{2} y}{d z^{2}}+k y=0$ then k is equal to
(A) -4
(B) 4
(C) 2
(D) -2

Ans: (B)
Hint: $\frac{d^{2} y}{d z^{2}}=\frac{d}{d z}\left(\frac{d y}{d z}\right)=\frac{d}{d z}\left(\frac{\frac{d y}{d x}}{\frac{d z}{d x}}\right)$
$=\frac{d}{d z}\left(\frac{\frac{d y}{d x}}{\frac{1}{\sin x}}\right) \quad\left(\because \frac{d z}{d x}=\frac{1}{\sin x}\right)$
$=\frac{d}{d z}\left(\sin x \cdot \frac{d y}{d x}\right)=\frac{\frac{d}{d x}\left(\sin x \cdot \frac{d y}{d x}\right)}{\frac{d z}{d x}}$
$=\sin x\left[\cos x \cdot \frac{d y}{d x}+\sin x \frac{d^{2} y}{d x^{2}}\right]$
$\because \frac{d^{2} y}{d z^{2}}+k y=0$
$\therefore \sin x \cdot \cos x \cdot \frac{d y}{d x}+\sin ^{2} x \frac{d^{2} y}{d x^{2}}+k y=0$
Dividing the equation by $\sin ^{2} x$, we get $\frac{d^{2} y}{d x^{2}}+\cot x \cdot \frac{d y}{d x}+k \cdot \operatorname{cosec}^{2} x \cdot y=0$
Comparing with the equation

$$
\frac{d^{2} y}{d x^{2}}+\cot x \cdot \frac{d y}{d x}+4 \operatorname{cosec}^{2} x \cdot y=0
$$

We get $\mathrm{k}=4$
54. If I is the greatest of
$I_{1}=\int_{0}^{1} e^{-x} \cos ^{2} x d x, I_{2}=\int_{0}^{1} e^{-x^{2}} \cos ^{2} x d x, I_{3}=\int_{0}^{1} e^{-x^{2}} d x, I_{4}=\int_{0}^{1} e^{-x^{2} / 2} d x$, then
(A) $\mathrm{I}=\mathrm{I}_{1}$
(B) $\mathrm{I}=\mathrm{I}_{2}$
(C) $\mathrm{I}=\mathrm{I}_{3}$
(D) $\quad \mathrm{I}=\mathrm{I}_{4}$

Ans: (D)
Hint : $e^{-x} \cdot \cos ^{2} x<e^{-x^{2}} \cos ^{2} x<e^{-x^{2}}<e^{-\frac{x^{2}}{2}}$ for $0<x<1$
\therefore By domination Law, I_{4} is maximum
$\therefore \mathrm{I}=\mathrm{I}_{4}$
55. $\lim _{x \rightarrow \infty}\left(\frac{x^{2}+1}{x+1}-a x-b\right),(a, b \in R)=0$. Then
(A) $\mathrm{a}=0, \mathrm{~b}=1$
(B) $\mathrm{a}=1, \mathrm{~b}=-1$
(C) $a=-1, b-1$
(D) $a=0, b=0$

Ans: (B)
Hint: $\lim _{x \rightarrow \infty} \frac{x^{2}+1-a x(x+1)-b(x+1)}{x+1}=0$
$=\lim _{x \rightarrow \infty} \frac{(1-a) x^{2}-(a+b) x+1-b}{x+1}=0$
for the limit to exist,

$$
\begin{aligned}
1-a & =0 \text { and }-(a+b)=0 \\
\therefore a=1, b & =-1
\end{aligned}
$$

56. Let the tangent and normal at any point $P\left(a t^{2}, 2 a t\right),(a>0)$, on the parabola $y^{2}=4 a x$ meet the axis of the parabola at T and G respectively. Then the radius of the circle through P, T and G is
(A) $a\left(1+t^{2}\right)$
(B) $\left(1+t^{2}\right)$
(C) $a\left(1-t^{2}\right)$
(D) $\left(1-t^{2}\right)$

Ans: (A)
Hint: $P\left(a t^{2}, 2 a t\right), T\left(-a t^{2}, 0\right), G\left(2 a+a t^{2}, 0\right)$
Slope of PT \times Slope of $\mathrm{PG}=-1$
$\therefore \mathrm{TG}$ is a diameter of the circle through points P, T and G.
\therefore radius $=\frac{1}{2} \mathrm{TG}=\mathrm{a}\left(1+\mathrm{t}^{2}\right)$
57. From the point $(-1,-6)$, two tangents are drawn to $y^{2}=4 x$. Then the angle between the two tangents is
(A) $\pi / 3$
(B) $\pi / 4$
(C) $\pi / 6$
(D) $\pi / 2$

Ans: (D)
Hint : $(-1,-6)$ lies on the directrix of the parabola $y^{2}=4 x$.
\therefore angle between tangents $=\pi / 2$
58. If $\vec{\alpha}$ is a unit vector, $\vec{\beta}=\hat{\mathrm{i}}+\hat{\mathrm{j}}-\hat{\mathrm{k}}, \vec{\gamma}=\hat{\mathrm{i}}+\hat{\mathrm{k}}$, then the maximum value of $[\vec{\alpha} \vec{\beta} \vec{\gamma}]$ is
(A) 3
(B) $\sqrt{3}$
(C) 2
(D) $\sqrt{6}$

Ans: (D)
Hint: $[\vec{\alpha} \vec{\beta} \vec{\gamma}]=\vec{\alpha} \cdot(\vec{\beta} \times \vec{\gamma})=\vec{\alpha} \cdot\left|\begin{array}{ccc}\hat{i} & \hat{j} & k \\ 1 & 1 & -1 \\ 1 & 0 & 1\end{array}\right|$
$=\vec{\alpha} \cdot(\hat{i}+2 \hat{j}-\hat{k})$ is maximum \Rightarrow angle between $\vec{\alpha} \& \hat{i}+2 \hat{j}-\hat{k}$ will be 0
$\therefore[\vec{\alpha} \vec{\beta} \vec{\gamma}]=|\vec{\alpha}||\hat{i}+2 \hat{j}-\hat{k}|=\sqrt{6}$
59. The maximum value of $f(x)=e^{\sin x}+e^{\cos x} ; x \in R$ is
(A) $2 e$
(B) $2 \sqrt{e}$
(C) $2 e^{1 / \sqrt{2}}$
(D) $2 e^{-1 / \sqrt{2}}$

Ans: (C)
Hint: $f(x)=e^{\sin x}+e^{\cos x}$

$$
\begin{aligned}
f^{\prime}(x) & =e^{\sin x} \cdot \cos x-e^{\cos x} \cdot \sin x \\
f^{\prime \prime}(x) & =e^{\sin x} \cos ^{2} x+e^{\cos x} \cdot \sin ^{2} x-\sin x \cdot e^{\sin x}-\cos x \cdot e^{\cos x} \\
& =e^{\sin x}\left(1-\sin x-\sin ^{2} x\right)+e^{\cos x}\left(1-\cos ^{2} x-\cos x\right) \\
f^{\prime}(\pi / 4) & =0 \text { and } f^{\prime \prime}(\pi / 4)<0 \\
f^{\prime}(x) & =0 \text { at } x=\pi / 4+2 n \pi \text { or } 5 \pi / 4+2 n \pi(n \in z)
\end{aligned}
$$

$\mathrm{f}^{\prime}(\pi / 4+2 \mathrm{n} \pi)=0$ and $\mathrm{f}^{\prime \prime}(\pi / 4+2 \mathrm{n} \pi)<0$
$\therefore f_{\text {max }}=f(\pi / 4+2 n \pi), n \in z=2 e^{1 / \sqrt{2}}$
60. A straight line meets the co-ordinate axes at A and B. A circle is circumscribed about the triangle $O A B, O$ being the origin. If m and n are the distances of the tangent to the circle at the origin from the points A and B respectively, the diameter of the circle is
(A) $m(m+n)$
(B) $m+n$
(C) $n(m+n)$
(D) $\frac{1}{2}(m+n)$

Ans: (B)
Hint: Clearly, $A B$ is one of diameter
$\because \mathrm{AM}$ and BN are parallel and $\angle \mathrm{BNO}=\angle \mathrm{AMO}=\pi / 2$
\therefore Points N, O and M are collinear.
$\therefore \square \mathrm{BNMA}$ is a rectangle
$\Rightarrow A B=M N=m+n$

61. The solution of $\operatorname{det}\left(A-\lambda I_{2}\right)=0$ be 4 and 8 and $A=\left(\begin{array}{ll}2 & 3 \\ x & y\end{array}\right)$. Then
(A) $x=4, y=10$
(B) $x=5, y=8$
(C) $x=3, y=9$
(D) $x=-4, y=10$

Ans: (D)
Hint : $\operatorname{det}\left(A-\lambda I_{2}\right)=0 \Rightarrow\left|\begin{array}{cc}2-\lambda & 3 \\ x & y-\lambda\end{array}\right|=0$
$\Rightarrow \quad(2-\lambda)(y-\lambda)-3 x=0$
$\Rightarrow 2 \mathrm{y}-\lambda \mathrm{y}-2 \lambda+\lambda^{2}-3 \mathrm{x}=0$
$\Rightarrow \quad \lambda^{2}-(y+2) \lambda+2 y-3 x=0$
$y+2=4+8 \Rightarrow y=10$
and $2 \mathrm{y}-3 \mathrm{x}=4 \times 8 \Rightarrow \mathrm{x}=-4$
62. The value of a for which sum of the squares of the roots of the equation $x^{2}-(a-2) x-a-1=0$ assumes the least value is
(A) 0
(B) 1
(C) 2
(D) 3

Ans: (B)
Hint : Let α, β be the roots, then
$\alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta$
$=(a-2)^{2}+2(a+1)$
$=a^{2}-2 a+6$
$=(a-1)^{2}+5 \geq 5$
$\therefore \alpha^{2}+\beta^{2}$ is minimum if $a=1$.
63. If x satisfies the inequality $\log _{25} x^{2}+\left(\log _{5} x\right)^{2}<2$, then x belongs to
(A) $\left(\frac{1}{5}, 5\right)$
(B) $\left(\frac{1}{25}, 5\right)$
(C) $\left(\frac{1}{5}, 25\right)$
(D) $\left(\frac{1}{25}, 25\right)$

Ans: (B)
Hint: \quad Domain $=(0, \infty)$
$\log _{5} x+\left(\log _{5} x\right)^{2}-2<0$
$\Rightarrow\left(\log _{5} x-1\right)\left(\log _{5} x+2\right)<0$
$\therefore-2<\log _{5} \mathrm{x}<1$
$\therefore \frac{1}{25}<\mathrm{x}<5$
64. $f: X \rightarrow \mathbb{R}, X=\{x \mid 0<x<1\}$ is defined as $f(x)=\frac{2 x-1}{1-|2 x-1|}$. Then
(A) fis only injective
(B) f is only surjective
(C) f is bijective
(D) fis neither injective nor surjective

Ans: (C)
Hint: Put $2 x-1=t$, then the function becomes
$f(t)=\frac{t}{1-|t|},-1<t<1$
$\therefore \mathrm{f}(\mathrm{t})=\left\{\begin{array}{l}\frac{\mathrm{t}}{1+\mathrm{t}},-1<\mathrm{t} \leq 0 \\ \frac{\mathrm{t}}{1-\mathrm{t}}, 0<\mathrm{t}<1\end{array}\right.$
\because It is continuous and $\quad f\left(-1^{+}\right)=-\infty, f\left(1^{-}\right)=+\infty$
\therefore Range $=(-\infty,-\infty)=\mathbb{R}$
It is differentiable also,
$f^{\prime}(t)=\left\{\begin{array}{l}\frac{1}{(1+t)^{2}},-1<t<0 \\ \frac{1}{(1-t)^{2}}, 0<t<1\end{array}\right.$
$\because \mathrm{f}^{\prime}(\mathrm{t})>0 \forall-1<\mathrm{t}<1$
$\therefore \mathrm{f}$ is injective
65. If $P_{1} P_{2}$ and $P_{3} P_{4}$ are two focal chords of the parabola $y^{2}=4 a x$ then the chords $P_{1} P_{3}$ and $P_{2} P_{4}$ intersect on the
(A) directrix of the parabola
(B) axis of the parabola
(C) latus-rectum of the parabola
(D) y-axis

Ans: (A)
Hint: Let $P_{i}\left(a t_{i}{ }^{2}, 2 a t_{i}\right), i=1,2,3,4$
then, $\mathrm{t}_{1} \mathrm{t}_{2}=\mathrm{t}_{3} \mathrm{t}_{4}=-1$
equation of $P_{1} P_{3}:\left(t_{1}+t_{3}\right) y=2 x+2 a t_{1} t_{3}$

$$
\begin{equation*}
P_{2} P_{4}:\left(t_{2}+t_{4}\right) y=2 x+2 a t_{2} t_{4} \tag{1}
\end{equation*}
$$

Putting $x=-a$ in equation (1) gives $y=\frac{2 a t_{1} t_{3}-2 a}{t_{1}+t_{3}}$
Putting $x=-a$ in equation (2) gives
$y=\frac{2 a t_{2} t_{4}-2 a}{t_{2}+t_{4}}=\frac{\frac{2 a}{t_{1} t_{3}}-2 a}{-\frac{1}{t_{1}}-\frac{1}{t_{3}}}=\frac{2 a\left(1-t_{1} t_{3}\right)}{-\left(t_{1}+t_{3}\right)}=\frac{2 a\left(t_{1} t_{3}-1\right)}{\left(t_{1}+t_{3}\right)}$
\therefore These lines meet at $\left(-a, \frac{2 a\left(t_{1} t_{3}-1\right)}{t_{1}+t_{3}}\right)$

CATEGORY - III (Q66 to Q75)

(Carry 2 marks each. One or more options are correct. No negative marks)
66. The line $y=x+5$ touches
(A) the parabola $y^{2}=20 x$
(B) the ellipse $9 x^{2}+16 y^{2}=144$
(C) the hyperbola $\frac{x^{2}}{29}-\frac{y^{2}}{4}=1$
(D) the circle $x^{2}+y^{2}=25$

Ans : (A, B, C are correct)
Hint: (A) $y^{2}=20 x=4(5) x \quad \therefore$ Tangent: $y=m x+\frac{a}{m}$ for $m=1, a=5$

$$
\therefore \mathrm{y}=\mathrm{x}+5 \text { is a tangent to } \mathrm{y}^{2}=20 \mathrm{x}
$$

(B) $9 x^{2}+16 y^{2}=144 \quad c^{2}=a^{2} m^{2}+b^{2} \quad y=x+5 \Rightarrow m=1 ; c=5$

$$
\begin{aligned}
& \Rightarrow \frac{\mathrm{x}^{2}}{16}+\frac{\mathrm{y}^{2}}{9}=1 \quad \therefore 5^{2}=16(1)^{2}+9 \Rightarrow \text { True } \\
& \therefore y=x+5 \text { is a tangent to } 9 x^{2}+16 \mathrm{y}^{2}=144
\end{aligned}
$$

(C) $\mathrm{c}^{2}=\mathrm{a}^{2} \mathrm{~m}^{2}-\mathrm{b}^{2} \quad \frac{\mathrm{x}^{2}}{29}-\frac{\mathrm{y}^{2}}{4}=1 \rightarrow \mathrm{a}^{2}=29 ; \mathrm{b}^{2}=4$
$5^{2}=29(1)^{2}-4 \rightarrow$ True
$\therefore \mathrm{y}=\mathrm{x}+5$ is a tangent
(D)

$\therefore \mathrm{y}=\mathrm{x}+5$ is NOT tangent to $\mathrm{x}^{2}+\mathrm{y}^{2}=25$
(A), (B), (C) are correct.
67. Let $p(x)$ be a polynomial with real co-efficients, $p(0)=1$ and $p^{\prime}(x)>0$ for all $x \in \mathbb{R}$. Then
(A) $p(x)$ has at least two real roots
(B) $p(x)$ has only one positive real root
(C) $p(x)$ may have negative real root
(D) $p(x)$ has infinitely many real roots

Ans: (C)
Hint: $P(x)=0$ has exactly one negative real root.
68. Twenty metres of wire is available to fence off a flower bed in the form of a circular sector. What must the radius of the circle be, if the area of the flower bed be greatest?
(A) 10 m
(B) 4 m
(C) 5 m
(D) 6 m

Ans: (C)
Hint : Let, radius $=r$, arc length $=\ell$

$$
2 r+\ell=20 \Rightarrow \ell=20-2 r
$$

$$
\Rightarrow A=\frac{1}{2} \ell r=\frac{1}{2}(20-2 r) r \Rightarrow \frac{d A}{d r}=\frac{1}{2}(20-4 r)=0 \Rightarrow r=5 \quad \therefore r=5 m
$$

69. Let $f(x)=x^{2}+x \sin x-\cos x$. Then
(A) $f(x)=0$ has at least one real root
(B) $f(x)=0$ has no real root
(C) $f(x)=0$ has at least one positive root
(D) $f(x)=0$ has at least one negative root

Ans: (A, C, D)
Hint: $f^{\prime}(x)=2 x+x \cos x+\sin x+\sin x=2(x+\sin x)+x \cos x$

70. From a balloon rising vertically with uniform velocity $\mathrm{vft} / \mathrm{sec}$ a piece of stone is let go. The height of the balloon above the ground when the stone reaches the ground after 4 sec is $\left[\mathrm{g}=32 \mathrm{ft} / \mathrm{sec}^{2}\right]$
(A) 220 ft
(B) 240 ft
(C) 256 ft
(D) 260 ft

Ans: (C)
Hint: When stone is let go, its velocity $=-v$ (downwards)
Let, it was at a height h.
$\therefore \mathrm{h}=-\mathrm{vt}+\frac{1}{2} \mathrm{gt}^{2}$

Aakash Educational Services Limited - Corp. Office: Aakash Tower, 8, Pusa Road, New Delhi-110005, Ph.: 011-47623456

