	Aaka	ASH INSTITUTE, K	olkata Centre	
Q.No.	Δ	B		D
01	D	В	C C	A
02	D	В	A	D
03	B	Δ	C C	C
05	C	A	В	C
06	A	А	D	А
07	D	C	A	В
08	B	B	A	A D
10	В	C	A	C
11	A	A	С	С
12	A C	<u> </u>	B	A D
14	A	A	A	C
15	С	С	С	D
16	B	A	C	D
18	D	D	A	C
19	A	В	В	A
20	A	С	C C	D
21	A	C	C C	B
23	<u>C</u>	D		B
24	В	D	D	A
25	A	B	A R	A
27	C	D	B	C
28	С	А	В	С
29	D	D	A	В
30	B	C	A	B
32	D	C	B	D
33	С	В	D	В
34	В	D	D	D
36	A,D	A,C	A,B,D	A,B
37	A,C	A,B,D	A,B	A,B
38	A,B,D	A,B	A,B	A,D
40	A,B	A,D	A,D A,C	A,C A,B,D
41	С	В	В	В
42	A	B	D	A
43	A	B	C A	C C
45	С	А	*	+ B or D
46	C	D	В	B
47	D			C C
49	В	D	A	A
50	В	A	D	С
51	В		В	A
53	A	В	A	C
54	С	С	С	С
55	# R	D	• D	B
57	D	C	B	A
58	A	С	С	D
59 60	A	B	C A	B
61	B	B	C	D
62	C	• D	A	A
63	D	+ B or D	A	C
65	A C	A C.	R C	₩ R
66	<u> </u>	<u>C</u>	B	C
67	В	С	В	D
68	+ B or D	C	A	A
70	● D	A A	B	B
71	C	A	B	B
72	A	B	В	A
73	B	B	A	C
75	A	C	A	B
76	A,B,C	B,C	B,C	A,D
77	B,C	B,C	A,D	A,B
79	A.D	A.B	A.B.C	R C
00	A B	ABC	BC	BC

Assuming Free radical as per question since structure has misprint Option not matching •

*

ANSWERS & HINTS

for

WBJEE - 2022 SUB : PHYSICS & CHEMISTRY

PHYSICS

CATEGORY - I (Q1 to Q30)

(Carry 1 mark each. Only one option is correct. Negative mark - 1/4)

1. Two charges, each equal to –q are kept at (–a, 0) and (a, 0). A charge q is placed at the origin. If q is given a small displacement along y direction, the force acting on q is proportional to

Physics & Chemistry

Hint:
$$U = AP^{2}V$$

$$\frac{dU}{dV} = AP^{2} + 2PAV \frac{dP}{dV} \quad [For adiabatic process dQ = 0, dU = -dw = -PdV]$$

$$-\frac{PdV}{dV} = AP^{2} + 2PAV \frac{dP}{dV}$$

$$-1 = AP + 2AV \frac{dP}{dV} \implies -1 - AP = 2AV \frac{dP}{dV}$$

$$-\int \frac{dV}{V} = \int \frac{2AdP}{AP+1}$$

$$-\ell n V + C = \frac{2A}{A} \ell n (AP + 1)$$
$$C = \ell n (AP + 1)^{2} + \ell n V \implies \overline{C = (AP + 1)^{2} V}$$

 One mole of a diatomic ideal gas undergoes a process shown in P-V diagram. The total heat given to the gas (In 2 = 0.7) is

(A) $2.5 P_0 V_0$ (B) $3.9 P_0 V_0$ (C) $1.1 P_0 V_0$ (D) $1.4 P_0 V_0$ Ans: (B)

Hint : For a Diatomic gas the total heat given is $\Delta Q_{AB} + \Delta Q_{BC}$ ΔQ_{AB} (Isochoric Process) = nC_V ΔT

$$= \frac{P_{f}V_{f} - P_{i}V_{i}}{\gamma - 1} = \frac{2P_{0}V_{0} - P_{0}V_{0}}{\frac{7}{5} - 1} = \frac{P_{0}V_{0}}{\left(\frac{2}{5}\right)} = \frac{5}{2}P_{0}V_{0} = 2.5 P_{0}V_{0}$$

 ΔQ_{AB} (Isothermal Process)

$$\begin{split} \mathbf{Q}_{BC} &= \mathbf{n} \mathbf{R} T \ell \mathbf{n} \frac{V_{f}}{V_{i}} &= \mathbf{P} V \ell \mathbf{n} \frac{V_{f}}{V_{i}} \\ &= 2 \mathbf{P}_{0} \times V_{0} \ell \mathbf{n} \left(\frac{2 V_{0}}{V_{0}} \right) &= 2 \mathbf{P}_{0} V_{0} \ell \mathbf{n} 2 \ = 1.4 \ \mathbf{P}_{0} V_{0} \\ &\Rightarrow \boxed{\Delta \mathbf{Q}_{total} = 3.9 \mathbf{P}_{0} V_{0}} \end{split}$$

Physics & Chemistry

WEJEE - 2022 (Answers & Hint)
 Physics & Chemistry

 7.

$$\overrightarrow{d}$$
 \rightarrow v

 Two infinite line-charges parallel to each other are moving with a constant velocity v in the same direction as shown in the figure. The separation between two line-charges is d. The magnetic attraction balances the electric repulsion when, [c = speed of light in free space]

 (A)
 $v = \sqrt{2c}$
 (B)
 $v = \frac{c}{\sqrt{2}}$
 (C)
 $v = c$
 (D)
 $v = \frac{c}{2}$

 Ans : (C)
 Hint: $F_{\Gamma} = Q_{\Gamma}E_{\Gamma} = \lambda_{f}/\frac{2k\lambda_{T}}{2\pi d}$
 $F_{E} = F_{B}$
 $2k\lambda_{F}\sqrt{2}$
 $k\lambda_{T}\sqrt{2/c}$
 $= \frac{2k\lambda_{T}\lambda_{T}}{4\pi c_{0}} = \frac{\mu_{T}\lambda_{T}\lambda_{T}\sqrt{2/c}}{2\pi d}$
 $2k\lambda_{T}\lambda_{T}/2$
 $k = 0.00.$ The coil is situated in a uniform magnetic field. All on a sudden, the magnetic flux linked with the circuit changes by 5 Weber. What amount of charge will flow in the circuit as a result?

 (A)
 500 C
 (B)
 0.05 C
 (C)
 Value of L is to be known to find the charge flown Ans: (C)

 Hint:
 Emf = $-\frac{d\phi}{dt} [Tardady's Law)$
 $i_{ansen} = \frac{Emf}{R} = \frac{d\phi}{dt} \cdot \frac{1}{R}$
 $j dq = -\int \frac{d\phi}{R}$
 $j dq = -\int \frac{d\phi}{R}$

$$F = IB_{0} \int_{a}^{2a} \left(2 - \frac{x}{a}\right) dx \left(-\hat{j}\right)$$

$$= IB_{0} \left[2x - \frac{x^{2}}{2a}\right]_{a}^{2a} \left(-\hat{j}\right)$$

$$= IB_{0} \left[\left(2 \times 2a - \frac{(2a)^{2}}{2a}\right) - \left(2a - \frac{a^{2}}{2a}\right)\right] \left(-\hat{j}\right)$$

$$= IB_{0} \left[\left(4a - 2a\right) - \left(\frac{3a}{2}\right)\right] \left(-\hat{j}\right)$$

$$= IB_{0} \left[2a - \frac{3a}{2}\right] \left(-\hat{j}\right)$$

$$= IB_{0} \left[\frac{a}{2}\right] \left(-\hat{j}\right)$$
Comparing F with $IB_{0} \left[\frac{ka}{2}\right] \hat{j}$, we get $k = -1$
11. E, r_{1}
R

A battery of emf E and internal resistance r is connected with an external resistance R as shown in the figure. The battery will act as a constant voltage source if

(B) r > >R

(D) It will never act as a constant voltage source

- (A) r < < R
- (C) r = R
- Ans : (A)

$$V_{R} = \frac{E}{(R+r)} \times R$$
, $V_{R} = \frac{E}{(1+r/R)}$

$$r << R, \ V_{_{\!R}} \approx E$$

	Hint : $\lambda = \frac{h}{\sqrt{2mk}}$, $\sqrt{mk} =$	const				
	$k \propto \frac{1}{m}$, $\varepsilon_1 > \varepsilon_3 > \varepsilon_2$					
15.	In a Young's double slit ex the interfering waves is λ , (periment, the intensity of light λ being the wavelength of light	at a p used)	oint on the screen wher us I. The intensity at a p	e the point v	path difference between where the path difference
	is $\frac{\lambda}{4}$ will be (assume two v	vaves have same amplitude)				
	(A) zero	(B) I	(C)	$\frac{1}{2}$	(D)	$\frac{1}{4}$
	Ans : (C)					
	Hint : $I' = I \cos^2 \phi / 2$					
	$\phi = \frac{2\pi}{\lambda} \Delta x$, $\phi = \frac{2\pi}{\lambda} \cdot \frac{\lambda}{4} = \frac{\pi}{2}$	2		A =		
	$\frac{\phi}{2} = \frac{\lambda}{4}, \mathbf{l}' = \mathbf{I}\cos^2\frac{\pi}{4} = \frac{\mathbf{l}}{2}$					
16.	In Young's double slit expe the interference pattern. V	riment with a monochromatic li Vhat is the ratio of the intensitie	ight, r es of t	naximum intensity is 4 t he two interfering wave	imes s ?	the minimum intensity in
	(A) 1/9	(B) 1/3	(C)	1/16	(D)	1/2
	Hint: $(\sqrt{l_1} + \sqrt{l_2})^2 = 4(\sqrt{l_1})^2$	$-\sqrt{l_2}$				
	$\sqrt{I_1} + \sqrt{I_2} = 2\left(\sqrt{I_1} - \sqrt{I_2}\right), 3$	$B_{\sqrt{I_2}} = \sqrt{I_1}$, $\frac{I_2}{I_1} = \frac{1}{9}$				
17.	The expression $\overline{A}(A+B)$ -	$+(B+AA)(A+\overline{B})$ simplifies to				
	(A) A + B Ans : (A)	(B) AB	(C)	$\overline{A+B}$	(D)	$\overline{A} + \overline{B}$
	Hint : $\overline{A}(A+B)+(B+AA)$	$(A + \overline{B})$				
	$= \overline{A}A + \overline{A}B + (B + A)(A $	B)				
	$= O + \overline{A}B + AB + A + B\overline{B} +$	AB				
	$= (\overline{A} + A)B + A + O + A\overline{B}$					
	= 1.B + A $(1+\overline{B})$					
	= A + B					

Physics & Chemistry

Hint : $S = \beta K_{\beta} A$ $\frac{\left[\mathsf{M}\mathsf{L}^{2}\mathsf{T}^{-2}\right]}{\left[\boldsymbol{\theta}\right]} = \left[\boldsymbol{\beta}\right] \left[\frac{\mathsf{M}\mathsf{L}^{2}\mathsf{T}^{-2}}{\boldsymbol{\theta}}\right] \left[\mathsf{L}^{2}\right] \qquad \left[\boldsymbol{\beta}\right] = \left[\mathsf{L}^{-2}\right]$ 21. Given : The percentage error in the measurements of A, B, C and D are respectively, 4%, 2%, 3% and 1%. The relative error in $Z = \frac{A^4 B^{\frac{1}{3}}}{\frac{3}{2}}$ is (B) $\frac{127}{5}\%$ (A) $\frac{127}{2}$ % (C) $\frac{127}{6}$ % (D) $\frac{127}{7}$ % Ans:(C) Hint: $Z = \frac{A^4B^{\frac{1}{3}}}{CD^{\frac{3}{2}}} = \frac{\Delta Z}{Z} = 4\frac{\Delta A}{A} + \frac{1}{3}\frac{\Delta B}{B} + \frac{\Delta C}{C} + \frac{3}{2}\frac{\Delta D}{D}$ $= 4 \times 4\% + \frac{1}{3} \times 2\% + 3\% + \frac{3}{2} \times 1\% = \left(16 + \frac{2}{3} + 3 + \frac{3}{2}\right)\%$ $=\left(\frac{127}{6}\right)\%$ 22. A particle is moving in an elliptical orbit as shown in figure. If \vec{p} , \vec{L} and \vec{r} denote the linear momentum, angular momentum and position vector of the particle (from focus O) respectively at a point A, then the direction of $\vec{\alpha} = \vec{p} \times \vec{L}$ is along (C) + ve y axis (D) – ve yaxis (A) + ve x axis (B) – ve x axis Ans:(A) **Hint**: $\vec{\alpha} = \vec{p} \times \vec{L}$ \vec{L} is along Z-axis

(A) Current in the loop $I = \frac{Bbv}{\lambda(2b+2a)}$

- (B) Current will be in clockwise direction, looking from the top.
- (C) $V_{P} V_{S} = V_{Q} V_{R}$, where V is the potential
- (D) There cannot be any induction in part SR.

Ans : (A, D)

 $\varepsilon = B \times b \times v$

$$i = \frac{\varepsilon}{R_{total}} = \frac{\varepsilon}{\lambda(2b+2a)}$$

Current is anticlockwise

$$V_{P} - V_{S} \neq V_{Q} - V_{R}$$

Also SR, $\vec{\ell} \parallel \vec{v}$; So $\varepsilon = 0$

- 38. A sample of hydrogen atom in its ground state is radiated with photons of 10.2 eV energies. The radiation from the sample is absorbed by excited ionized He⁺. Then which of the following statement/s is / are true ?
 - (A) He⁺ electron moves from n = 2 to n = 4
 - (B) In the He⁺ emission spectra, there will be 6 lines
 - (C) Smallest wavelength of He⁺ spectrum is obtained when transition taken place from n = 4 to n = 3
 - (D) He⁺ electron moves from n = 2 to n = 3

Ans : (A, C)

Hint : E =
$$13.6 \times 2^2 \left(\frac{1}{n^2} - \frac{1}{m^2} \right)$$

n = 2 to m = 4

E = 13.6 × 2² ×
$$\left(\frac{1}{2^2} - \frac{1}{4^2}\right)$$
 = 10.2 eV

So He⁺ electron can move from n = 2 to n = 4

Number of spectral lines
$$=\frac{n(n-1)}{2}=\frac{4}{2}(4-1)=6$$

Smallest wavelength correspond to n = 4 to n = 3 transition

- 39. A particle is moving in x y plane according to $\vec{r} = b \cos \omega t \hat{i} + b \sin \omega t \hat{j}$. Where ω is constant. Which of the following statement(s) is / are true ?
 - (A) $\frac{E}{a}$ is a constant where E is the total energy of the particle
 - (B) The trajectory of the particle in x y plane is a circle

(C) In $a_x - a_y$ plane, trajectory of the particle is an ellipse (a_x , a_y denotes the components of acceleration) (D) $\vec{a} = \omega^2 \vec{v}$ Ans : (A, B) **Hint** : \vec{r} = bcos ω t i + bsin ω t j $\vec{v} = \frac{d\vec{r}}{dt} = -b\omega \sin\omega t i + b\omega \cos\omega t j$ $(\vec{v}) = \sqrt{b^2 \omega^2 \sin^2 \omega t + b^2 \omega^2 \cos^2 \omega t}$ $(\vec{v}) = b\omega \rightarrow \text{constant}$ $\therefore E = \frac{1}{2}mv^2 = \text{constant}$ $E = \frac{1}{2}m[b^2\omega^2] \implies \frac{E}{\omega} = \frac{1}{2}mb^2.\omega = constant$ x = bcosωt $y = bsin\omega t$ $x^2 + y^2 = b^2 \rightarrow$ equation of circle So ā ≠ ω²⊽ $\therefore \vec{a} \perp \vec{v}$ 40. F В ↑ 0 X

Two wires A and B of same length are made of same material. Load (F) vs. elongation (x) graph for these two wires is shown in the figure. Then which of the following statement(s) is / are true ?

- (A) The cross-section area of A is greater than that of B.
- (B) Young's modulus of A is greater than Young's modulus of B.
- (C) The cross-sectional area of B is greater than that of A.
- (D) Young's modulus of both A and B are same.

Ans : (A, D)

Hint : Same meterial have identical Young's Modulus.

For a given strain and Young's Modulus.

stress in same

$$\frac{F_{A}}{A_{A}} = \frac{F_{B}}{A_{B}} \implies \frac{F_{A}}{F_{B}} = \frac{A_{A}}{A_{B}}$$

as $F_A > F_B$, $A_A > A_B$

WB.	JEE - 2022 (Answers & Hint)						Physics & Chemistry
			CHEMIS	STR	<u> </u>		
			<u>CATEGORY-I (</u>	Q41	<u>to Q70)</u>		
	(Carry 1	mar	k each. Only one optior	n is c	orrect. Negative mar	ks –¼	4)
41.	Which one of the following	j is th	e correct set of four quan	itum i	numbers (n, l, m, s) ?		
	(A) $(3,0,-1,+\frac{1}{2})$	(B)	$\left(4,3,-2,-\frac{1}{2}\right)$	(C)	$\left(3,1,-2,-\frac{1}{2}\right)$	(D)	$\left(4,2,-3,+\frac{1}{2}\right)$
	Ans : (B)						
	Hint : n = 4, ℓ = 0, 1, 2, 3						
	For ℓ = 3, m = -3, -	-2, –1	, 0, +1, +2, +3				
	For m = -2, s = $-\frac{1}{2}$	-					
42.	Avogadro's law is valid for						
	(A) all gases	(B)	ideal gas	(C)	Van der Waals gas	(D)	real gas
	Ans : (B)						
	Hint : Fact						
43.	A metal (M) forms two oxic atomic of M is	les. T	[`] he ratio M:O (by weight) i	in the	two oxides are 25:4 an	d 25:6	δ. The minimum value of
	(A) 50	(B)	100	(C)	150	(D)	200
	Ans : (B)		(\mathbf{b})				
	Hint : Let two oxide be			(
	M_2O_x and M_2Oy						
	As per guestion						
	$\frac{2a}{16x} = \frac{25}{4}$ and $\frac{2a}{16y}$	$=\frac{25}{6}$		BN	JU'S		
	$x = \frac{a}{50}, y = \frac{3a}{100}$ where $x = \frac{3a}{100}$	here	a = atomic mass of Meta	ıl			
	As x and y to be an	integ	ler,				
	If we take a = 50, th	ien x	= 1, y = 1.5 (not possible	e)			
	If we take a = 100 t	nen x	= 2, y = 3 (possible)				
	Minimum Atomic	Mas	s = 100 u				
44.	The de-Broglie wavelength α are the same)	ι (λ) fo	or electron (e), proton (p) a	and H	le ²⁺ ion ($lpha$) are in the follo	owing	order. (Speed of e, p and
	(A) α > p > e	(B)	$e > p > \alpha$	(C)	e > α > p	(D)	α e
	Ans : (B)						
	Hint : $\lambda = \frac{h}{mv}$						
	··· speed are same						
	<u> </u>						
	∴ ∧∞— m						
	$\therefore \lambda_{e} > \lambda_{p} > \lambda_{\alpha}$ as	m _a ۶	> m _p > m _e				

45. 1 mL of water has 25 drops. Let N₀ be the Avogadro number. What is the number of molecules present in 1 drop of water ? (Density of water = 1 g/mL)
(A)
$$\frac{0.02}{29}N_{b}$$
 (B) $\frac{12}{25}N_{5}$ (C) $\frac{25}{18}N_{5}$ (D) $\frac{0.04}{25}N_{5}$
Ans : (A)
Hint : Volume of one drop = $\left(\frac{1}{25}\right)$ mL
 \therefore Mass of 1 drop = V × d
= $\left(\frac{1}{25}$ mL $\right)(1g/mL)$
= $\frac{1}{25}$ g
Number of moles of H₂O = Mass of water in one drop = $\frac{15}{18} = \frac{1}{25 \times 18}$
 \therefore Number of H₂O Molecule = $\frac{1}{25 \times 18}N_{c} = \frac{1}{25} = \frac{1}{18} = \frac{1}{25 \times 18}$
 \therefore Number of H₂O Molecule = $\frac{1}{25 \times 18}N_{c} = \frac{1}{50 \times 9}N_{c} = \frac{0.02}{9}N_{b}$
46. In Bohr model of atom, radius of hydrogen atom in ground state is r, and radius of He^c ion in ground state is r₂. Which of the following is correct?
(A) $\frac{\Gamma_{c}}{\Gamma_{c}} = 4$ (B) $\frac{\Gamma_{c}}{\Gamma_{c}} = \frac{1}{2}$ (C) $\frac{\Gamma_{c}}{\Gamma_{c}} = \frac{1}{4}$ (D) $\frac{\Gamma_{c}}{\Gamma_{c}} = \frac{1}{2}$
Ans : (D)
Hint : $r_{a} = a_{a} \times \frac{n^{2}}{2}$
 $\frac{1}{5} = \frac{1}{2}$
47. The average speed of H₂ at T₁K is equal to that of O₂ at T₂K. The ratio T₁: T₂ is
(A) 1: 6 (B) 16: 1 (C) 1: 4 (D) 1: 1
Ans : (No option is correct)
Hint: (C_a)_{A₁} = (C_a)_{A₂}

Physics & Chemistry

WB.	IEE - 2022 (Answers & Hint)				Physics & Chemistry
51.	The number of unpaired electron in Mn ²⁺ ion is				
	(A) 2 (B) 3	(C)	5	(D)	6
	Ans : (C)				
	Hint : Mn^{2+} : [Ar]3d ⁵ = \uparrow \uparrow \uparrow \uparrow				
52.	The correct bond order of B–F bond in BF_3 molecule is				
	(A) 1 (B) $1\frac{1}{2}$	(C)	2	(D)	$1\frac{1}{3}$
	Ans : (D)				-
	Hint : B.O = $\frac{2+1+1}{3} = 1\frac{1}{3}$				
	$ \overset{\oplus}{F} \overset{\ominus}{=} \overset{F}{\underset{F}{}} \overset{F}{\underset{F}{}} \longleftrightarrow \overset{F}{F} \overset{G}{\underset{F}{}} \overset{\oplus}{\underset{F}{}} \overset{F}{\underset{F}{}} \longleftrightarrow \overset{G}{F} \overset{G}{\underset{F}{}} \overset{F}{\underset{F}{}} \overset{F}{\underset{F}{}} $				
53.	Sodium nitroprusside is				
	(A) Na ₄ [Fe(CN) ₅ NO ₂] (B) Na ₂ [Fe(CN) ₅ NO]	(C)	Na ₃ [Fe(CN) ₅ NO]	(D)	Na ₄ [Fe(CN) ₅ NO ₃]
	Ans : (B)				
	Hint : Fact				
54.	Choose the correct statement for the $[Ni(CN)_4]^{2-}$ complete	x ion	(Atomic no. of Ni = 28)		
	(A) The complex is square planar and paramagnetic		53		
	(B) The complex is tetrahedral and diamagnetic				
	(C) The complex is square planar and diamagnetic				
	(D) The complex is tetrahedral and paramagnetic				
	[Ar]3d [*] 4s [°] 4p [°]				
	Ni^{2+} : $\uparrow\downarrow\uparrow\downarrow\uparrow\downarrow\uparrow\uparrow$				
	dsp ² Hybridisation : $\begin{bmatrix} Ar \end{bmatrix} 3d^8$				
	Paired e's dsp ²				
FF	(Square planar complex and diamagnetic)	0 100	son is that		
55.	(A) Hydrogen bonds are stronger in water	erea	son is that		
	(R) Hydrogen bonds are stronger in HE				
	(C) Hydrogen bonds are larger in number in HF				
	(D) Hydrogen bonds are larger in number in water				
	Ans : (D)				

WBJEE - 2022 (Answers & Hint) **Physics & Chemistry** 67. $C_6H_6(liq) + \frac{15}{2}O_2(g) \rightarrow 6CO_2(g) + 3H_2O(liq)$ Benzene burns in oxygen according to the above equation. What is the volume of oxygen (at STP) needed for complete combustion of 39 gram of liquid benzene? (A) 11.2 litre (B) 22.4 litre (D) 168 litre (C) 84 litre Ans:(C) Hint: $n_{C_6H_6} = \frac{39}{78} = \frac{1}{2}$ mole From Balanced equation, $n_{C_6H_6} = \frac{2}{15}n_{O_2}$ $\frac{1}{2} = \frac{2}{15} \times \frac{xL}{22.4L}$ ∴ x = 84 L 68. How much solid oxalic acid (Molecular weight 126) has to be weighed to prepare 100 mL exactly 0.1 (N) oxalic acid solution in water? (B) 0.126 g (A) 1.26 g (D) 0.063 q (C) 0.63 q Ans:(C) Hint: $n_{eq} = N \times V(L)$ $= (0.1) \left(\frac{100}{1000} \right) = 0.01$ weight =no. of eq (n_{eq}) × Equivalent mass=0.01× $\frac{126}{2}$ = 0.63g 69. The major product of the following reaction is $F_{3}C-CH = CH_{2} + HBr \rightarrow$ (A) $F_{3}C - CH_{2} - CH_{2}Br$ (B) $F_{3}C - CH(Br) - CH_{3}$ (C) $F_{2}C - CH(F) - CH_{3}$ (D) $F_{2}CH - CH - CH_{2}F_{3}$ Ans:(A) Hint: $F_3C - CH = CH_2 \longrightarrow F_3C - CH_2 - CH_2 \longrightarrow F_3C - CH_2 - CH_$ (more stable) 70. The correct order of relative stability of the given conformers of n-butane is CH -CH Н н CH, н 111 Ш (A) || > | = ||| (B) || > ||| > | (C) || > | > ||| (D) | = ||| > || Ans : (A) Hint : || > | = ||| Anti form is more stable than Gauche form.

WBJEE - 2022 (Answers & Hint) **Physics & Chemistry** Category II (Q71 to Q 75) (Carry 2 marks each. Only one option is correct. Negative marks : 1/2) 71. Pick the correct statement. (A) Relative lowering of vapour pressure is independent of T. (B) Osmotic pressure always depends on the nature of solute. (C) Elevation of boiling point is independent of nature of the solvent. (D) Lowering of freezing point is proportional to the molar concentration of solute. Ans:(A) Hint: Relative lowering of vapour pressure is $\frac{\Delta P}{P^{\circ}}$, which is equal to mole fraction of solute which is independent of temperature. 72. Let $(C_{rms})_{H_2}$ is the r.m.s speed of H_2 at 150 K. At what temperature, the most probable speed of helium $\left[(C_{mp})_{H_2} \right]$ will be half of $(C_{rms})_{H_2}$? (B) 112.5 K (A) 75 K 225 K (D) 900 K Ans:(B) Hint: $C_{rms} = \sqrt{\frac{3RT}{M}}$ $C_{mp} = \sqrt{\frac{2RT}{M}}$ As per question $\frac{1}{2}\sqrt{\frac{3 \times R \times 150}{2}} = \sqrt{\frac{2RT}{4}}$ T = 112.5 K 73. The correct pair of electron affinity order is (C) S > O, F > Cl (D) S < O, Cl > F (A) O > S, F > CI(B) O < S, CI > F Ans:(B) Hint: Second period elements of p-block have lower values of electron affinity than expected due to unusually smaller size.

The double bonds will continue to get reduced in one molecule one after another. This process will continue till all the hydrogens are exhausted.

WB.	JEE - 2022 (Answers & Hint) Physics & Chemistry
	Category III (Q76 to Q80)
	(Carry 2 marks each. One or more options are correct. No negative marks)
76.	Which of the statements are incorrect?
	(A) pH of a solution of salt of strong acid and weak base is less than 7.
	(B) pH of a solution of a weak acid and weak base is basic if $K_{s} < K_{s}$.
	(C) pH of an aqueous solution of 10^{-8} (M) HCl is 8.
	(D) Conjugate acid of NH ⁻ is NH ₂ .
	Ans : (B, C)
	Hint :
	* pH of a solution of strong acid and weak base (say $NH_{4}CI$) is less than 7.
	* For hydrolysis of salt of weak acid and weak base.
	When $K_a > K_b$, pH < 7
	* pH of 10 ⁻⁸ M HCl (aq) will be less than 7.
	* Conjugate acid of NH_2^- is NH_3 . This is a true statement.
77.	During the preparation of NH_3 in Haber's process, the promoter(s) used is / are –
	(A) PtO ₂ (B) Mo (C) Mix of Al ₂ O ₃ and K ₂ O (D) Fe and Mn
	Ans : (B, C)
	Hint :
	Mo was used as promoter earlier. Now K_2O and Al_2O_3 are used as promoter.
78.	The correct statement(s) about B_2H_6 is / are :
	(A) All B atoms are sp ³ hybridised (B) It is paramagnetic
	(C) It contains 3C - 4e bonding (D) There are two types of H present
	Ans : (A, D)
	Hint :
	In diborane, all boron atoms are sp ³ hybridised. It is diamagnetic and contains 3C – 2e bonds. There are two types of hydrogens – terminal and bridging.
79.	Which of the following would produce enantiomeric products when reacted with methyl magnesium iodide?
	(A) Benzaldehyde (B) Propiophenone (C) Acetone (D) Acetaldehyde
	Ans : (A, B)
	Hint :
	о он
	$ \begin{array}{c} H \\ R - C - R' \xrightarrow{1. CH_3MgI} R - C' - R' \end{array} $
	2. H ₃ O ⁺
	CH ₃
	When R and R' are different and none of them is methyl, we will get enantiomeric product.
	0 0
	$CH_2 CH_3$ H $CH_2 - CH_3$ $CH_3 - C - H$
	(Benzaldehvde) (Propiophenone) (Acetone) (Acetaldehvde)
1	
Ļ	
Aakas	sn ⊨aucational Services Limited - Corp. Office: Aakash Tower, 8, Pusa Road, New Delhi-110005, Ph.: 011-47623456 (30)

WBJEE - 2022 (Answers & Hint) **Physics & Chemistry** CH₃ C 80. CH₃ The above conversion can be carried out by, (B) i. $H_2 NNH_2$ ii. NaOH in ethylene glycol, Δ (A) Zn-Hg/Conc. HCl (C) i. $HSCH_2CH_2SH / H^{\oplus}$ ii. H_2 / Ni (D) Bromine water Ans : (A, B, C) Hint: (A) Zn - Hg / Conc. HCl - Clemmensen Reduction (B) $NH_2 - NH_2$, NaOH in ethylene glycol, $\Delta - Wolf$ -Kishner reduction (C) i. $HSCH_2CH_2SH / H^+$ ii. $H_2 / Ni - Mozingo method.$ These are known to reduce $-CO - to - CH_2 - CH_2$