

4. Let f : [a, b] $\rightarrow \mathbb{R}$ be differentiable on [a, b] & k \in \mathbb{R}. Let f(a) = 0 = f(b) Also let J(x) = f'(x) + k f(x). Then (A) J(x) > 0 for all $x \in [a, b]$ (B) J(x) < 0 for all $x \in [a, b]$ (C) J(x) = 0 has at least one root in (a, b) (D) J(x) = 0 through (a, b) Ans:(C) **Hint**: Let g(x) = kx f(x) which is continuous in [a, b] and differentiable in (a, b) g(a) = 0 = g(b)) \Rightarrow g'(c) = 0 for same c \in (a, b) (by Rolle's theorem) \Rightarrow kf(c) + kcf'(c) = 0 \Rightarrow j(x) = 0 for same x = c \in (a, b) Let $f(x) = 3x^{10} - 7x^8 + 5x^6 - 21x^3 + 3x^2 - 7$. Then $\lim_{h \to 0} \frac{f(1-h) - f(1)}{h^3 + 3h}$ 5. (B) is $\frac{50}{3}$ (C) is $\frac{53}{3}$ (D) is $\frac{22}{3}$ (A) does not exsit Ans:(C) Hint: $\lim_{h \to 0} \frac{f(1-h) - f(1)}{h^3 + 3h} = \lim_{h \to 0} \frac{f(1) - f(1-h)}{-h} \times \frac{h}{h^3 + 3h}$ $=-f'(1) \times \frac{1}{3} = \frac{53}{3}$ 6. Let $f: [a, b] \rightarrow \mathbb{R}$ be such f is differentiable in (a, b), f is continuous at x = a & x = b and moreover f(a) = 0 = f(b). Then (A) there exists at least one point c in (a, b) such that f'(c) = f(c)(B) f'(x) = f(x) does not hold at any poit in (a, b) (C) at every point of (a, b), f'(x) > f(x)(D) at every point of (a, b), f'(x) < f(x)Ans:(A) **Hint**: Let, $g(x) = e^{-x} f(x)$ which is continuous in [a, b] and differentiable in (a, b) Now, g(a) = g(b) = 0 $\Rightarrow \exists k \in (a, b)$ so that $g'(k) = 0 \implies e^{-k}f'(k) - e^{-k}f(k) = 0$ \Rightarrow f'(k) = f(k) 7. Let $f: \mathbb{R} \to \mathbb{R}$ be a twice continuously differentiable function such that f(0) = f(1) = f'(0) = 0. Then (A) f''(0) = 0(B) f''(c) = 0 for some $c \in \mathbb{R}$ (C) if $c \neq 0$, then $f''(c) \neq 0$ (D) f'(x) > 0 for all $x \neq 0$ Ans:(B) **Hint** : f(0) = f(1) = 0 \Rightarrow f'(k) = 0 for same k \in (0, 1) by Rolle's Theorem. Again, f'(0) = f'(k) = 0 \Rightarrow f''(c) = 0 for same c \in (0, k) by Rolle's Theorem.

8. If
$$\int e^{\sin x} \left[\frac{x \cos^2 x - \sin x}{\cos^2 x} \right] dx = e^{\sin x} f(x) + c$$
, where c is constant of integration, then $f(x) =$
(A) sec $x - x$ (B) $x - \sec x$ (C) $\tan x - x$ (D) $x - \tan x$
Ans : (B)
Hint : $e^{\sin x} \left\{ \frac{x \cos^2 x - \sin x}{\cos^2 x} \right\} = e^{\sin x} (x \cos x - \sec x \tan x)$
 $= e^{\sin x} (x \cos x - 1 + 1 - \sec x \tan x) = e^{\sin x} \cos x (x - \sec x) + e^{\sin x} (1 - \sec x \tan x)$
 $= d[e^{\sin x} (x - \sec x)]$
9. If $\int f(x) \sin x \cos x dx = \frac{1}{2(b^2 - a^2)} \log f(x) + c$, where c is the constant of integration, then $f(x) =$
(A) $\frac{2}{(b^2 - a^2) \sin 2x}$ (B) $\frac{2}{ab \sin 2x}$ (C) $\frac{2}{(b^2 - a^2) \cos 2x}$ (D) $\frac{2}{ab \cos 2x}$
Ans : (C)
Hint : $\frac{d}{dx} \left[\frac{1}{2(b^2 - a^2)} \log f(x) + c \right]$
 $= \frac{f(x)}{f(x)} \times \frac{1}{2(b^2 - a^2)} \log f(x) + c \right]$
 $= \frac{f(x)}{f(x)} \times \frac{1}{2(b^2 - a^2)} \log f(x) + c \right]$
 $= \frac{f(x)}{f(x)} \times \frac{1}{2(b^2 - a^2)} \log f(x) + c \right]$
 $= \frac{f(x)}{f(x)} \times \frac{1}{2(b^2 - a^2)} (Take f(x) = y)$
 $\Rightarrow y^2 \sin 2x = \frac{dy}{dx} \frac{1}{b^2 - a^2}$ (Take f(x) = y)
 $\Rightarrow \int \frac{dy}{y^2} = (b^2 - a^2) \int \sin 2x dx \Rightarrow y = \frac{2}{(b^2 - a^2) \cos 2x}$
10. If $M = \int_0^{\frac{2}{3}} \frac{\sin x \cos x}{(x + 1)^2} dx$, then the value of $M - N$ is
(A) π (B) $\frac{\pi}{4}$ (C) $\frac{2}{\pi - 4}$ (D) $\frac{2}{\pi + 4}$
Ans : (D)
Hint : $N = \int_0^{\frac{2}{3}} \frac{\sin 2x dx}{(2(x + 1)^2)}$
 $= t 2x = t$, $dt = 2dx$, $N = \int_0^{\frac{2}{3}} \frac{\sin t \frac{dt}{2}}{2(\frac{t + 2)^2}{4}} \Rightarrow N = \int_0^{\frac{2}{3}} \frac{\sin t dt}{(t + 2)^2} = \left(\frac{-\sin t}{t + 2} \right)_0^{\frac{2}{3}} + \int_0^{\frac{2}{3}} \frac{\cos t}{(t + 2)} dt$
 $\Rightarrow N = \frac{-2}{\pi + 4} + M \Rightarrow M - N = \frac{2}{\pi + 4}$

11. The value of the integral
$$1 = \sum_{v \ge 0+1}^{2\pi v} \frac{\tan^{-1} x}{x} dx$$
 is
(A) $\frac{\pi}{4} \log 2014$ (B) $\frac{\pi}{2} \log 2014$ (C) $\pi \log 2014$ (D) $\frac{1}{2} \log 2014$
Ans: (B)
Hint: $1 = \sum_{v \ge 0+1}^{2\pi v} \frac{\tan^{-1} x}{x} dx = \sum_{s \ge 0+1}^{2\pi v} \tan^{-1} t / t \times t \times \left(-\frac{1}{t^2}\right) dt$ (put $x = 1/t$)
 $= \sum_{v \ge 0+1}^{2\pi v} \frac{\tan^{-1} x}{t} dt$
 $\Rightarrow 21 - \pi/2 \sum_{v \ge 0+1}^{2\pi v} \frac{dx}{t} \Rightarrow 1 - \frac{\pi}{4} \times 2\log 2014 - \frac{\pi}{2}\log 2014$
12. Let $1 = \sum_{s \ge 0}^{2\pi v} \frac{dx}{t} \Rightarrow 1 - \frac{\pi}{4} \times 2\log 2014 - \frac{\pi}{2}\log 2014$
13. The value of $1 = \sum_{s \ge 0}^{2\pi v} \frac{e^{\pi s/t} dx}{t}$
(A) $\frac{1}{2} \le 1 \le 1$ (B) $4 \le 1 \le 2\sqrt{30}$ (C) $\frac{\sqrt{3}}{8} \le 1 \le \frac{\sqrt{2}}{6}$ (D) $1 \le 1 \le \frac{2\sqrt{3}}{\sqrt{2}}$
Ans: (C)
Hint: $1 = \sum_{s \ge 0}^{2\pi v} \frac{\pi}{3} \times dx$
 $\Rightarrow \frac{3}{\pi} x \sin \frac{\pi}{3} \times \left(\frac{\pi}{3} - \frac{\pi}{4}\right) \le 1 \le \frac{4}{\pi} \times \sin \frac{\pi}{4} \times \left(\frac{\pi}{3} - \frac{\pi}{4}\right)$
 $\Rightarrow \frac{\sqrt{3}}{8} \le 1 \le \frac{\sqrt{2}}{6}$
13. The value of $1 = \sum_{s \ge 0}^{2\pi v} \frac{e^{\pi s/t} (\tan t)}{t e^{\pi s/t} (\tan t)} + e^{\pi s/t} (\tan t)}{t e^{\pi s/t} (\tan t)} + e^{\pi s/t} (\tan t)} dx$, is
(A) 1 (B) π (C) e (D) $\pi/2$
Ans: (B)
Hint: $1 = \int_{0}^{2\pi v} \frac{e^{\pi s/t} (\tan t)}{t e^{\pi s/t} (\tan t)} dx - \int_{0}^{2\pi v} \frac{e^{\pi s/t} (\tan t)}{t e^{\pi s/t} (\tan t)} dx} \Rightarrow 1 = \frac{5\pi}{4} - \frac{\pi}{4} \Rightarrow 1 = \pi$
14. The value of $\lim_{t \ge -\pi} \frac{1}{16} \sec^{2\pi t} \frac{\pi}{4n} + \sec^{2\pi t} \frac{\pi}{4n} + \ldots + \sec^{2\pi t} \frac{\pi}{4n} dx$
(A) $\log_{2} 2$ (B) $\frac{\pi}{2}$ (C) $\frac{4}{\pi}$ (D) e
Ans: (C)
Hint: Required limit $= \lim_{t \ge \pi} \frac{\pi}{2t} \frac{1}{18} \sec^{2t} \left(\frac{\pi\pi}{4n}\right) = \frac{1}{8} \sec^{2t} \left(\frac{\pi\pi}{4}\right) dx = \frac{4}{\pi} \tan\left(\frac{\pi x}{4}\right) \Big|_{0}^{t} = \frac{4}{\pi}$

15.	The differential equation rep	resenting the family of curve	s y² =	$= 2d(x + \sqrt{d})$ where d is	s a para	imeter, is of
	(A) order 2 (B) degree 2	(C)	degree 3	(D)	degree 4
	Ans : (C)					
	Hint : $y^2 = 2dx + 2d^{\frac{3}{2}}$					
	$2y\frac{dy}{dx} = 2d$					
	Degree = 3					
16.	Let $y(x)$ be a solution of $(1 +$	$(x^2)\frac{dy}{dx} + 2xy - 4x^2 = 0$ and y	r(0) =	–1. Then y(1) is equa	to	
	(A) $\frac{1}{2}$ ((B) $\frac{1}{3}$	(C)	<u>1</u> 6	(D)	-1
	Ans : (C)					
	Hint : $\frac{dy}{dx} + \left(\frac{2x}{1+x^2}\right)y = \frac{4x}{1+x^2}$	$\frac{e^2}{x^2}$, $IF = e^{\int \frac{2x}{1+x^2} dx} = e^{\ln(1+x^2)}$	= 1+	x^2 : $y = \frac{4x^3}{3(1+x^2)} - \frac{1}{1}$	$\frac{1}{x^2}$:	$y(1) = \frac{4}{6} - \frac{1}{2} = \frac{2}{3} - \frac{1}{2}$
	$=\frac{1}{6}$					
17.	The law of motion of a body r	moving along a straight line is	s x =	$\frac{1}{2}$ vt, x being its distant	ce from	a fixed point on the line
	at time t and v is its velocity	there. Then		2		
	(A) acceleration f varies dir	rectly with x	(B)	acceleration f varies i	nverse	ly with x
	 (C) acceleration f is consta Δns · (Δ) 	int	(D)	acceleration f varies	directly	with t
	4 dy 1	du] v 1				
	Hint : $x = \frac{1}{2}vt \Rightarrow \frac{dx}{dt} = \frac{1}{2} vt$	$V + t \frac{\mathrm{d} v}{\mathrm{d} t} \bigg] \Rightarrow V = \frac{v}{2} + \frac{1}{2} t f \Rightarrow f$	$r = \frac{v}{t}$	$\Rightarrow f = \frac{2x}{t^2}$		
18.	Number of common tangen	ts of $y = x^2$ and $y = -x^2 + 4x - 4x^2$	- 4 is			
	(A) 1 ((B) 2	(C)	3	(D)	4
	Ans: (B)					
	P (α , α^2) is a point on th	nis parabola.				
	$\therefore y - \alpha^2 = 2\alpha (x - \alpha)$	·				
	$y = 2\alpha x - \alpha^2 - (1)$ is a	atangent				
	$\therefore 2\alpha x - \alpha^2 = -x^2 + 4x + 4$	- 4				
	$x^{2}+2x(\alpha-2)+(4-\alpha^{2})=0$ Discriminant = 0	J				
	$4(\alpha - 2)^2 - 4(4 - \alpha^2) = 0$					
	$\alpha^2 - 4\alpha + \cancel{A} - \cancel{A} + \alpha^2 =$: 0				
	$\alpha^2 - 2\alpha = 0$					
	$\alpha = 0, \ \alpha = 2$					

Given that n number of A.Ms are inserted between two sets of numbers a, 2b and 2a, b where a, $b \in \mathbb{R}$. Suppose further that the m th means between these sets of numbers are same, then the ratio a : b equals						
(A)	n – m + 1 : m	(B) n – m + 1 : n	(C)	n : n – m + 1	(D)	m : n – m + 1
Ans:	(D)					
Hint	2b = (n+2)th term = a	a+(n+1)d				
	$d = \frac{2b - a}{n + 1}$					
	\therefore mth mean = a + m	$\left(\frac{2b-a}{n+1}\right)$				
	Similarly b = (n+2)th t	term = 2a+(n+1)d				
	$d = \frac{b - 2a}{n + 1}$					
	∴ mth mean = 2a+m	$\left(\frac{b-2a}{n+1}\right)$				
	$\therefore a + m\left(\frac{2b - a}{n + 1}\right) = 2a$	$a + m\left(\frac{b-2a}{n+1}\right)$				
	$\frac{a}{b} = \frac{m}{n+1-m}$					
lf x +	$\log_{10}(1+2^{x}) = x \log_{10} 5$	+ $\log_{10}6$ then the value of x is	5			
(A)	<u>1</u> 2	(B) $\frac{1}{3}$	(C)	1	(D)	2
Ans :	(C)					
Hint	$x + \log_{10}(1+2^x) = x$	$\log_{10} 5 + \log_{10} 6$				
	$\log_{10}(10^{x}) + \log_{10}(1 +$	2^{x}) = log ₁₀ 5 ^x + log ₁₀ 6				
	$2^{x}(1+2^{x}) = 6$					
	$y(1+y) = 6 \implies y = 2 =$	$\Rightarrow 2^{x} = 2 \Rightarrow x = 1$				
If Z _r	$=\sin\frac{2\pi r}{11}-i\cos\frac{2\pi r}{11}$ the second se	nen $\sum_{r=0}^{10} Z_r =$				
(A)	–1	(B) 0	(C)	i	(D)	i
Ans:	(B)					
Hint	$Z_r = -i\left(\cos\frac{2\pi r}{11} + i\sin^2\theta\right)$	$n\frac{2\pi r}{11}\right) = -i e^{i\frac{2\pi r}{11}}$				
	$\Rightarrow \sum_{r=0}^{10} Z_r = -i \sum_{r=0}^{10} e^{i \frac{2\pi r}{11}}$	$=-i\mathbf{x}0=0$				
	Giver furthe (A) (A) Ans : Hint : (A) Ans : Hint : (A) Ans : Hint :	Given that n number of A. further that the m th means (A) $n - m + 1 : m$ Ans : (D) Hint : $2b = (n+2)$ th term = $a + m$ $d = \frac{2b - a}{n+1}$ \therefore mth mean = $a + m$ Similarly $b = (n+2)$ th the set of	Given that n number of A.Ms are inserted between two further that the m th means between these sets of number (A) $n - m + 1 : m$ (B) $n - m + 1 : n$ Ans: (D) Hint: $2b = (n+2)$ th term $= a + (n+1)d$ $d = \frac{2b-a}{n+1}$ \therefore mth mean $= a + m\left(\frac{2b-a}{n+1}\right)$ Similarly $b = (n+2)$ th term $= 2a + (n+1)d$ $d = \frac{b-2a}{n+1}$ \therefore mth mean $= 2a + m\left(\frac{b-2a}{n+1}\right)$ \therefore $a + m\left(\frac{2b-a}{n+1}\right) = 2a + m\left(\frac{b-2a}{n+1}\right)$ $\frac{a}{b} = \frac{m}{n+1-m}$ If $x + \log_{10}(1+2^x) = x \log_{10}5 + \log_{10}6$ then the value of x is (A) $\frac{1}{2}$ (B) $\frac{1}{3}$ Ans: (C) Hint: $x + \log_{10}(1+2^x) = x \log_{10}5 + \log_{10}6$ $\log_{10}(10^x) + \log_{10}(1+2^x) = \log_{10}5^x + \log_{10}6$ $2^x(1+2^x) = 6$ $y(1+y) = 6 \Rightarrow y = 2 \Rightarrow 2^x = 2 \Rightarrow x = 1$ If $Z_r = \sin\frac{2\pi r}{11} - i\cos\frac{2\pi r}{11}$ then $\sum_{r=0}^{10} Z_r =$ (A) -1 (B) 0 Ans: (B) Hint: $Z_r = -i\left(\cos\frac{2\pi r}{11} + i\sin\frac{2\pi r}{11}\right) = -ie^{i\frac{\pi r}{11}}$ $\Rightarrow \sum_{r=0}^{10} Z_r = -i\sum_{r=0}^{10} e^{i\frac{2\pi r}{11}} = -ix0 = 0$	Given that n number of A.Ms are inserted between two sets of further that the m th means between these sets of numbers are (A) $n - m + 1 : m$ (B) $n - m + 1 : n$ (C) Ans : (D) Hint : $2b = (n+2)$ th term = $a + (n+1)d$ $d = \frac{2b-a}{n+1}$ \therefore mth mean = $a + m\left(\frac{2b-a}{n+1}\right)$ Similarly $b = (n+2)$ th term = $2a + (n+1)d$ $d = \frac{b-2a}{n+1}$ \therefore mth mean = $2a + m\left(\frac{b-2a}{n+1}\right)$ \therefore $a + m\left(\frac{2b-a}{n+1}\right) = 2a + m\left(\frac{b-2a}{n+1}\right)$ $\frac{a}{b} = \frac{m}{n+1-m}$ If $x + \log_{10}(1+2^{x}) = x \log_{10}5 + \log_{10}6$ then the value of x is (A) $\frac{1}{2}$ (B) $\frac{1}{3}$ (C) Ans : (C) Hint : $x + \log_{10}(1+2^{x}) = x \log_{10}5 + \log_{10}6$ $\log_{10}(10^{x}) + \log_{10}(1+2^{x}) = \log_{10}5^{x} + \log_{10}6$ $2^{x}(1+2^{x}) = 6$ $y(1+y) = 6 \Rightarrow y = 2 \Rightarrow 2^{x} = 2 \Rightarrow x = 1$ If $Z_{r} = \sin\frac{2\pi r}{11} - i\cos\frac{2\pi r}{11}$ then $\sum_{r=0}^{10} Z_{r} =$ (A) -1 (B) 0 (C) Ans : (B) Hint : $Z_{r} = -i\left(\cos\frac{2\pi r}{11} + i\sin\frac{2\pi r}{11}\right) = -ie^{i\frac{2\pi r}{11}}$ $\Rightarrow \sum_{r=0}^{10} Z_{r} = -i\frac{2}{r=0}^{10}e^{i\frac{2\pi r}{11}} = -ix0 = 0$	Given that n number of A.Ms are inserted between two sets of numbers a, 2b and 2a further that the m ^m means between these sets of numbers are same, then the ratio a (A) n - m + 1 : m (B) n - m + 1 : n (C) n : n - m + 1 Ans: (D) Hint : 2b = (n+2)th term = a+(n+1)d $d = \frac{2b-a}{n+1}$ $\therefore \text{ mth mean = a + m\left(\frac{2b-a}{n+1}\right)$ Similarly b = (n+2)th term = 2a+(n+1)d $d = \frac{b-2a}{n+1}$ $\therefore \text{ mth mean = 2a+m}\left(\frac{b-2a}{n+1}\right)$ $a = \frac{m}{n+1-m}$ If x + log ₁₀ (1+2 ^x) = x log ₁₀ 5 + log ₁₀ 6 then the value of x is (A) $\frac{1}{2}$ (B) $\frac{1}{3}$ (C) 1 Ans: (C) Hint : x + log ₁₀ (1+2 ^x) = x log ₁₀ 5 + log ₁₀ 6 $\log_{10}(10^x) + \log_{10}(1+2^x) = \log_{10}5 + \log_{10}6$ $\log_{10}(10^x) + \log_{10}(1+2^x) = \log_{10}5^x + \log_{10}6$ $2'(1+2') = 6$ $y'(1+y') = 6 \Rightarrow y = 2 \Rightarrow 2^x = 2 \Rightarrow x = 1$ If Z _r = sin $\frac{2\pi r}{11} - \log \frac{2\pi r}{11}$ then $\frac{16}{r_{xx}} Z_r =$ (A) -1 (B) 0 (C) i Ans: (B) Hint : Z _r = -i $\left(\cos \frac{2\pi r}{11} + i \sin \frac{2\pi r}{11} \right) = -i e^{i \pi r}$ $\Rightarrow \sum_{r=0}^{10} Z_r = -i \frac{1}{r_{x0}} e^{i \frac{2\pi r}{r_{xx}}} = -ix0 = 0$	Given that n number of A.Ms are inserted between two sets of numbers a, 2b and 2a, b wh further that the m th means between these sets of numbers are same, then the ratio a : b eq. (A) $n - m + 1 : m$ (B) $n - m + 1 : n$ (C) $n : n - m + 1$ (D) Ans : (D) Hint : 2b = (n+2)th term = a+(n+1)d $d = \frac{2b - a}{n+1}$ \therefore mth mean = $a + m\left(\frac{2b - a}{n+1}\right)$ Similarly b = (n+2)th term = 2a+(n+1)d $d = \frac{b-2a}{n+1}$ \therefore mth mean = $2a + m\left(\frac{b-2a}{n+1}\right)$ \therefore at $m\left(\frac{2b - a}{n+1}\right) = 2a + m\left(\frac{b-2a}{n+1}\right)$ $a = \frac{m}{n+1-m}$ If x + log ₁₀ (1+2 ⁺) = x log ₁₀ 5 + log ₁₀ 6 then the value of x is (A) $\frac{1}{2}$ (B) $\frac{1}{3}$ (C) 1 (D) Ans : (C) Hint : x + log ₁₀ (1+2 ⁺) = x log ₁₀ 5 + log ₁₀ 6 $log_{10}(10^{+}) + log_{10}(1+2^{*}) = log_{10}5^{*} + log_{10} 6$ $2^{2}(1+2^{*}) = 6$ $y(1+y) = 6$ $y = 2 \Rightarrow 2^{*} = 2 \Rightarrow x = 1$ If $Z_{-} = sin\frac{2\pi r}{11} - icos\frac{2\pi r}{11}$ then $\frac{50}{r-0}Z_{-} =$ (A) -1 (B) 0 (C) i (D) Ans : (B) Hint : $Z_{-} = -i\left(cos\frac{2\pi r}{11} + isin\frac{2\pi r}{11}\right) = -i e^{\frac{\pi}{11}}$

22. If z_1 and z_2 be two non zero complex numbers such that $\frac{z_1}{z_2} + \frac{z_2}{z_1} = 1$, then the origin and the points represented by z_1 and z₂ (B) form a right angled triangle (A) lie on a straight line (C) form an equilateral triangle (D) from an isosceles triangle Ans:(C) **Hint**: $z_1^2 + z_2^2 + z_2^3 = z_1z_2 + z_2z_3 + z_3z_1$ is the condition for $z_1z_2z_3$ to be the vertices of an equilateral triangle. Putting $z_3 = 0$ $Z_1^2 + Z_2^2 = Z_1 Z_2$ 23. If $b_1b_2 = 2(c_1+c_2)$ and b_1 , b_2 , c_1 , c_2 are all real numbers, then at least one of the equations $x^2+b_1x + c_1 = 0$ and $x^{\overline{2}}+b_{2}x+c_{2}=0$ has (A) real roots (B) purely imaginary roots (C) roots of the form a+ib (a, $b \in \mathbb{R}$, $ab \neq 0$) (D) rational roots Ans:(A) **Hint** : $D_1 = b_1^2 - 4c_1$ $D_2 = b_2^2 - 4c_2$ $\overline{D_1 + D_2} = b_1^2 + b_2^2 - 4(c_1 + c_2) = b_1^2 + b_2^2 - 2b_1b_2 = (b_1 - b_2)^2 \ge 0$ \therefore At least one of D₁, D₂ non-negative. 24. The number of selection of n objects from 2n objects of which n are identical and the rest are different is (A) 2ⁿ (B) 2ⁿ⁻¹ (C) 2ⁿ-1 (D) 2ⁿ⁻¹+1 Ans:(A) Hint: Ways of selections are n identical and no different = 1 way n–1 identical and one from different elements = $1 \times n_{c}$ 0 identical rest from different = $1 \times C_{n}$ $\sum_{n=1}^{n} C_{0}^{n} + C_{1}^{n} C_{2}^{n} + \dots + C_{n}^{n} = 2^{n}$ 25. If $(2 \le r \le n)$, then ${}^{n}C_{r} + 2$. ${}^{n}C_{r+1} + {}^{n}C_{r+2}$ is equal to (B) ⁿ⁺¹C_{r+1} (C) ⁿ⁺²C_{r+2} (A) 2. ⁿC_{r+2} (D) n+1C Ans:(C) **Hint**: ${}^{n}C_{r} + 2 {}^{n}C_{r+1} + {}^{n}C_{r+2}$ $= {}^{n}C_{r} + {}^{n}C_{r+1} + {}^{n}C_{r+1} + {}^{n}C_{r+2} = {}^{n+1}C_{r+1} + {}^{n+1}C_{r+2} = {}^{n+2}C_{r+2}$ 26. The number $(101)^{100} - 1$ is divisible by (D) 10¹² (B) 10⁶ (C) 10⁸ (A) 10⁴ Ans:(A) Hint: $(101)^{100} - 1 = (1 + 100)^{100} - 1$ $= [1 + {}^{100}C_1 100 + {}^{100}C_2 100^2 + \dots + {}^{100}C_{100} (100)^{100}] - 1 = 10^4 (1 + {}^{100}C_2 + {}^{100}C_3 10^2 + \dots + {}^{100}C_{100} (100)^{98})$ $= 10^4 (1 + an integer multiple of 10)$

27.	If n is even positive integer, then the condition that the greatest term in the expansion of (1+x) ⁿ may also have the greatest coefficient is						
	(A) $\frac{n}{n+2} < x < \frac{n+2}{n}$ (B) Ans: (A)	$) \frac{n}{n+1} < x < \frac{n+1}{n}$	(C) $\frac{n+1}{n+2} < x < \frac{n+2}{n+1}$	(D)	$\frac{n+2}{n+3} < x < \frac{n+3}{n+2}$		
	Hint: $\frac{n}{2} < \frac{x(n+1)}{x+1} < \frac{n}{2} + 1 \Rightarrow$	$\frac{n}{n+2} < x < \frac{n+2}{n}$					
28.	If $\begin{vmatrix} -1 & 7 & 0 \\ 2 & 1 & -3 \\ 3 & 4 & 1 \end{vmatrix} = A$, then $\begin{vmatrix} 13 \\ -7 \\ -21 \end{vmatrix}$	–11 5 –1 25 –3 –15					
	(A) A ² (B) Ans:(A)) $A^2 - A + I_3$	(C) $A^2 - 3A + I_3$	(D)	$3A^2 + 5A - 4I_3$		
	Hint: $P = \begin{bmatrix} -1 & 7 & 0 \\ 2 & 1 & -3 \\ 3 & 4 & 1 \end{bmatrix}$						
	then adj P = $\begin{bmatrix} 13 & -11 \\ -7 & -1 \\ -21 & -3 \end{bmatrix}$	5 25 –15					
	$A = P $ and $A^2 = Adj(P) $	2					
29.	If $a_r = (\cos 2r\pi + i \sin 2r\pi)^{1/9}$, the second sec	then the value of $\begin{vmatrix} a_1 & a_2 \\ a_4 & a_5 \\ a_7 & a_8 \end{vmatrix}$	a ₃ a ₆ a ₉ is				
	(A) 1 (B) Ans:(C)) –1	(C) 0	(D)	2		
	Hint : Let $\alpha = e^{i2\pi/9}$ then given	n determinant = $\begin{vmatrix} \alpha & \alpha^2 \\ \alpha^4 & \alpha^5 \\ \alpha^7 & \alpha^8 \end{vmatrix}$	$ \begin{vmatrix} \alpha^{3} \\ \alpha^{6} \\ \alpha^{9} \end{vmatrix} = \alpha^{12} \begin{vmatrix} 1 & \alpha & \alpha^{2} \\ 1 & \alpha & \alpha^{2} \\ 1 & \alpha & \alpha^{2} \end{vmatrix} = 0 $				
30.	If $S_r = \begin{vmatrix} 2r & x & n(n+1) \\ 6r^2 - 1 & y & n^2(2n+3) \\ 4r^3 - 2nr & z & n^3(n+1) \end{vmatrix}$) (3), then the value of $\sum_{r=1}^{n}$	S_r is independent of				
	(A) x only (B) Ans:(D)) y only	(C) n only	(D)	x, y, z and n		
	Hint: $\sum_{r=1}^{n} S_{r} = \begin{vmatrix} n(n+1) & x \\ n^{2}(2n+3) & y \\ n^{3}(n+1) & z \end{vmatrix}$	$ \begin{array}{c} n(n+1) \\ n^{2}(2n+3) \\ n^{3}(n+1) \end{array} = 0 $					

31. If the following three linear equations have a non-trivial solution, then x + 4ay + az = 0x + 3by + bz = 0x + 2cy + cz = 0(A) a, b, c are in A.P. (B) a, b, c are in G.P (C) a, b, c are in H.P. (D) a + b + c = 0Ans:(C) **Hint :** To have non-trivial solution, $\begin{vmatrix} 1 & 4a & a \\ 1 & 3b & b \\ 1 & 2c & c \end{vmatrix} = 0 \Rightarrow \frac{1}{c} + \frac{1}{a} = \frac{2}{b}$ 32. On \mathbb{R} , a relation ρ is defined by x ρ y if and only if x – y is zero or irrational. Then (A) ρ is equivalence relation (B) ρ is reflexive but neither symmetric nor transitive (C) ρ is reflexive and symmetric but not transitive (D) ρ is symmetric and transitive but not reflexive Ans : (C) Hint : On the set \mathbb{R} $x \rho y \Leftrightarrow x - y = 0 \text{ or } x - y \in Q^{c} :: x - x = 0 \Longrightarrow x \rho x \text{ (Reflexive)}$ if $x - y = 0 \Rightarrow y - x = 0$ or $x - y \in Q^c \Rightarrow y - x \in Q^c$ (Symmetric) Take x = $1 + \sqrt{2}$; y = $\sqrt{2} + \sqrt{3}$; z = $\sqrt{2} + 2$ $x - y = 1 - \sqrt{3} \in \Omega^{\circ}$ and $y - z = \sqrt{3} - 2 \in Q^{\circ}$ Here xRy and yRz but x is not related to z ... Not transitive 33. On the set \mathbb{R} of real numbers, the relation ρ is defined by $x\rho y$, $(x, y) \in \mathbb{R}$ (A) If |x-y| < 2 then ρ is reflexive but neither symmetric nor transitive (B) If x - y < 2 then ρ is reflexive and symmetric but not transitive (C) If $|\mathbf{x}| \ge \mathbf{y}$ then ρ is reflexive and transitive but not symmetric (D) If x > |y| then ρ is transitive but neither reflexive nor symmetric Ans:(D) **Hint :** for option D, x > |x| is not true hence not reflexive Take x = 2, y = -1, clearly x > |y| but y > |x| doe not hold hence not symmetric Now, Let x > |y| and $y > |z| \Rightarrow x, y > 0$. \therefore Rewriting, x > |y| and $y > |z| \Rightarrow x > |z|$ hence transitive 34. If $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = e^x$ and $g: \mathbb{R} \to \mathbb{R}$ be defined by $g(x) = x^2$. The mapping $g \circ f: \mathbb{R} \to \mathbb{R}$ be defined by $(g \circ f)(x) = g[f(x)] \forall x \in \mathbb{R}$, Then (A) $g \circ f$ is bijective but f is not injective (B) $g \circ f$ is injective and g is injective (C) $g \circ f$ is injective but g is not bijective (D) $g \circ f$ is surjective and g is surjective Ans:(C) Hint: g is neither injective nor surjective $g \circ f(x) = e^{2x}, x \in \mathbb{R} \therefore g \circ f$ is injective 35. In order to get a head at least once probability \geq 0.9, the minimum number of time a unbiased coin needs to be tossed is (A) 3 (C) 5 (D) 6 (B) 4 Ans:(B) **Hint :** Let x = no. of heads appear in n tossed $X \sim Bin\left(n,\frac{1}{2}\right)$ Now, P ($_{X \ge 1}$) = 1 - P (x = 0) = 1 - $\frac{1}{2^n} \ge 0.9 \Rightarrow \frac{1}{2^n} \le \frac{1}{10} \Rightarrow n \ge 4$ \therefore minimum number of tosses = 4

36.	A student appears for tests I, II and III. The student is successful if he passes in tests I, II or I, III. The probabilities of						
	the student passing in tests, I, II and III are respectively p, q and $\frac{1}{2}$. If the probability of the student to be successful						
	$\frac{1}{2}$						
	2						
	(A) p (1 + q) = 1	(B) q (1+p) = 1	(C)	pq = 1	(D)	$\frac{1}{p} + \frac{1}{q} = 1$	
	Ans : (A) Hint : Let x_1 - He passes x_2 - He passes in te x_3 - He passes in be x - He is successful	s in test-I st-II est - III I					
	$\mathbf{X} \equiv \left(\mathbf{X}_1 \cap \mathbf{X}_2 \cap \mathbf{X}_3'\right) \cup$	$ u(\mathbf{x}_1 \cap \mathbf{x}_2' \cap \mathbf{x}_3) \cup (\mathbf{x}_1 \cap \mathbf{x}_3) $	$(\mathbf{x}_2 \cap \mathbf{X}_3)$				
	$\therefore p(\mathbf{x}) = p(\mathbf{x}_1) \cdot p(\mathbf{x}_2)$	$(x_2).p(x_3')+p(x_1).p(x_2').$	$p(x_3) + p(x_1)$).p(x ₂).p(x ₃)			
	$\Rightarrow \frac{1}{2} = pq.\frac{1}{2} + p(1)$	$(-q)\frac{1}{2} + pq\frac{1}{2} \Rightarrow p + pc$	q = 1 ∴p(1+q)	=1			
37.	If $\sin 6\theta + \sin 4\theta + \sin 2\theta$	$\theta = 0$, then general valu	e of θ is				
	(A) $\frac{n\pi}{4}$, $n\pi\pm\frac{\pi}{3}$	(B) $\frac{n\pi}{4}$, $n\pi \pm \frac{\pi}{6}$	(C)	$\frac{n\pi}{4}$,2n $\pi \pm \frac{\pi}{3}$ (n is	s integer)	(D) $\frac{n\pi}{4}, 2n\pi \pm \frac{\pi}{6}$	
	Ans : (A)						
	Hint : $\sin 6\theta + \sin 4\theta + \theta = 0$ or	$\sin 2 = \theta 0 \Rightarrow 2 \sin 4\theta. \alpha$ $2 \cos 2\theta + 1 = 0$	$\cos 2\theta + \sin \phi$	4 θ =			
	\Rightarrow 4 θ = n π	$\Rightarrow \cos 2\theta = -\frac{1}{2}$					
	$\Rightarrow \theta = \frac{n\pi}{4}, (n \in \mathbb{Z})$	$\implies 2\theta = 2n\pi\pm\frac{2\pi}{3}$					
		$\Rightarrow \theta = n\pi \pm \frac{\pi}{3} \big(n \in \mathbb{Z} \big)$					
38.	If $0 \le A \le \frac{\pi}{4}$, then tan^{-1}	$\left(\frac{1}{2}\tan 2A\right)$ + $\tan^{-1}\left(\cot A\right)$) + tan ⁻¹ (cot ³	A) is equal to			
	(A) $\frac{\pi}{4}$	(Β) π	(C)	0	(D)	$\frac{\pi}{2}$	
	Ans : (B)						
39.	Without changing the $x^2 + y^2 - 4x - 6y + 9 = 0$	direction of the axes, t changes to	he origin is	transferred to the	e point (2,	3). Then the equation	
	(A) $x^2 + y^2 + 4 = 0$		(B)	$x^2 + y^2 = 4$			
	(C) $x^2 + y^2 - 8x - 12y + y^2 - 1$	+ 48 = 0	(D)	$x^2 + y^2 = 9$			
	Ans:(B)						
	HINT: $x \rightarrow x + 2$, $y \rightarrow y + 3$ in given curve $\Rightarrow x^2 + y^2 = 4$						
	$\rightarrow x + y - \tau$						

40. The angle between a pair of tangents drawn from a point P to the circle
$$x^2 + y^2 + 4x - 6y + 9 \sin^2\alpha + 13 \cos^2\alpha = 0$$
 is 2α . The equation of the locus of the point P is
(A) $x^2 + y^2 + 4x + 6y + 9 = 0$ (B) $x^2 + y^2 - 4x + 6y + 9 = 0$
(C) $x^2 + y^2 - 4x - 6y + 9 = 0$ (C) $x^2 + y^2 + 4x - 6y + 9 = 0$
Ans: (D)
Hint: $e^{-2\beta}$
 $\therefore \sin\alpha = \frac{CA}{CP}$
 $\Rightarrow [(h+2)^2 + (h-3)^2]\sin^2\alpha = 4\sin^2\alpha$
 $\Rightarrow 1^2 + k^2 + 4h - 6k + 9 = 0$ (C) $x^2 + y^2 + 4x - 6y + 9 = 0$
Ans: (D)
Hint: $e^{-2\beta}$
 $\Rightarrow [(h+2)^2 + (h-3)^2]\sin^2\alpha = 4\sin^2\alpha$
 $\Rightarrow 1^2 + k^2 + 4h - 6k + 9 = 0$
41. The point Q is the image of the point P(1, 5) about the line $y = x$ and R is the image of the point Q about the line $y = -x$. The circumenter of the APQR is
(A) (5, 1) (B) (-5, 1) (C) (1, -5) (D) (0, 0)
Ans: (D)
Hint: $e^{-2\beta}$
 $= C(5, 1)$
 $\therefore -2Q = 90^{\circ}$ \Rightarrow Circumcentre = mid point of P and R i.e. (0, 0)
42. The angular points 0 a triangle are A(-1, -7), B(5, 1) and C(1, 4). The equation of the bisector of the $\angle ABC$ is
(A) $x = 7y + 2$ (B) $7y = x + 2$ (C) $y = 7x + 2$ (D) $7x = y + 2$
Ans: (B)
Hint: Equation of AB: $3y - 4x + 17 = 0$
Equation of BC: $4y + 3x - 19 = 0$
Equation of BC: $4y + 3x - 19 = 2$ ($3y - 4x + 17$) (using position of points A and C with respect to bisectors)
 $7y = x + 2$
43. If one of the diameters of the circle given by the equation $x^2 + y^2 + 4x + 6y - 12 = 0$, is a chord of a circle S, whose centre is (2, -3), the radius of S is.
(A) $\sqrt{41}$ unit (B) $3\sqrt{5}$ unit (C) $5\sqrt{2}$ unit (D) $2\sqrt{5}$ unit
Ans: (A)
Hint: $e^{-2\beta}$
 $x - (-2 + r \cos 90^2, -3 + r \sin 90^2) = A(-2, r - 3)$
Putting $A(-2, r - 3)$, the radius of S is.
(A) $\sqrt{41}$ unit (B) $3\sqrt{5}$ unit (C) $5\sqrt{2}$ unit (D) $2\sqrt{5}$ unit
Ans: (A)
 $x - x = x - |r| = 5$
 $CN = 4$ $\therefore CA = \sqrt{41}$

44.	A chord AB is drawn fron AM = 2AB. The locus of M	n the point A (0, 3) on the cire M is	cle x ²	$+ 4x + (y - 3)^2 = 0$, an	d is e	xtended to M such that
	(A) $x^2 + y^2 - 8x - 6y + 9$	$\theta = 0$	(B)	x ² + y ² + 8x + 6y + 9 =	= 0	
	(C) $x^2 + y^2 + 8x - 6y + 9$	$\theta = 0$	(D)	$x^2 + y^2 - 8x + 6y + 9 =$	= 0	
	Ans:(C)					
	11in4 .	•				
	HINT: $A(0,3)$ B	M (x,y)				
	AM = 2AB	$\Rightarrow B\left(\frac{x}{2}, \frac{y+3}{2}\right)$. Putting in t	the cir	$rcle \Rightarrow x^2 + y^2 + 8x - 6y$	/ + 9 =	= 0
45.	Let the eccentricity of the	hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ be reci	proca	I to that of the ellipse x^2	+ 9y² :	= 9, then the ratio a^2 : b^2
	equals					
	(A) 8:1	(B) 1:8	(C)	9:1	(D)	1:9
	Ans : (A)					
	Hint : $1 + \frac{b^2}{a^2} = \frac{9}{8}$	$\Rightarrow \frac{b^2}{a^2} = \frac{1}{8} \qquad \Rightarrow \frac{a^2}{b^2} =$	<u>8</u> 1			
46.	Let A, B be two distinct po AB as diameter, the slope	pints on the parabola $y^2 = 4x$. If a of the line AB is	f the a	xis of the parabola touc	hes a	circle of radius r having
	(A) $-\frac{1}{r}$	(B) $\frac{1}{r}$	(C)	$\frac{2}{r}$	(D)	$-\frac{2}{r}$
	Ans : (C,D)					
	Hint : Slope of AB = $\frac{2}{t_1}$	$\frac{2}{t_2}$				
	$A(t_1) \xrightarrow{B(t_1)} A(t_2)$	t ₂)				
	$\therefore \pm \mathbf{r} = \frac{2\mathbf{t}_1 + 2\mathbf{t}_2}{2}$	\Rightarrow t ₁ + t ₂ = ± r \therefore Slope	$r=\frac{2}{r}$	$-\frac{-2}{r}$		
47.	Let P(at ² , 2at), Q, R(ar ² , 2 where the co-ordinates of	ar) be three points on a parabo K is (2a, 0), then the value of	ola y² = r is	= 4ax. If PQ is the focal o	chord	and PK, QR are parallel
	(A) $\frac{t}{1-t^2}$	(B) $\frac{1-t^2}{t}$	(C)	$\frac{t^2+1}{t}$	(D)	$\frac{t^2-1}{t}$
	Ans : (D)					
	Hint : Slope of QR = $\frac{2}{r-1}$	$\frac{1}{t}$				
	Slope of Pk = $\frac{2at}{at^2 - 2a} = \frac{1}{at^2 - 2a}$	$\frac{2t}{t^2-2} \Rightarrow \frac{2}{r-\frac{1}{t}} = \frac{2t}{t^2-2} \Rightarrow r =$	$=\frac{t^2-2}{t}$	1		

48. Let P be a point on the ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$ and the line through P parallel to the y-axis meets the circle $x^2 + y^2 = 9$ at Q, where P, Q are on the same side of the x-axis. If R is a point on PQ such that $\frac{PR}{RQ} = \frac{1}{2}$, then the locus of R is (A) $\frac{x^2}{9} + \frac{9y^2}{49} = 1$ (B) $\frac{x^2}{49} + \frac{y^2}{9} = 1$ (C) $\frac{x^2}{9} + \frac{y^2}{49} = 1$ (D) $\frac{9x^2}{49} + \frac{y^2}{9} = 1$ Ans:(A) **Hint**: $P(3\cos\theta, 2\sin\theta)$ Equation of line // to y axis is $x = 3 \cos\theta$ It meets circle at θ \therefore Q(3 cos θ , 3sin θ) ·· PR : RQ = 1 : 2 $\therefore \mathsf{R}\left(3\cos\theta, \frac{7\sin\theta}{3}\right)$ $\Rightarrow \frac{x^2}{9} + \frac{9y^2}{49} = 1$ 49. A point P lies on a line through Q(1, -2, 3) and is parallel to the line $\frac{x}{1} = \frac{y}{4} = \frac{z}{5}$. If P lies on the plane 2x + 3y - 4z + 22 = 0, then segment PQ equals to (B) <u>√</u>_32 units (C) 4 (A) $\sqrt{-42}$ units (D) 5 units units Ans:(A) It lies on 2x + 3y - 4z + 22 = 0Hint: Let P (+ $\lambda 1$, 4 - $\lambda 2$, 5 λ + 3) $\therefore 2(\lambda + 1) + 3(4\lambda - 2) - 4(5\lambda + 3) + 22 = 0$ $\therefore 6\lambda = 6$ $\Rightarrow \lambda = 1$ \therefore P = (2, 2, 8) \therefore PQ = $\sqrt{1^2 + 4^2 + 5^2} = \sqrt{42}$ 50. The foot of the perpendicular drawn from the point (1, 8, 4) on the line joining the points (0, -11, 4) and (2, -3, 1) is (C) (4, -5, 2) (A) (4, 5, 2) (B) (-4, 5, 2) (D) (4, 5, -2) Ans:(D) Hint: Equation of line is $\frac{x}{9} = \frac{y+11}{8} = \frac{z-4}{-3}$ Let foot of \perp be P (2 λ , 8 λ -11, -3 λ + 4) DR's of line joining (1, 8, 4) and 'P' is $(2\lambda - 1, 8\lambda - 19, -3\lambda)$ $\therefore 2(2\lambda - 1) + 8(8\lambda - 19) - 3(-3\lambda) = 0$ \Rightarrow 4 λ + 64 λ + 9 λ = 2 + 152 \Rightarrow 77 λ = 154 $\Rightarrow \lambda = 2$ ∴ 'P' is (4, 5, -2)

WDJ	LL - 2010 (Answers & mint)						Mathematics
56. From a collection of 20 consecutive natural numbers, four are selected such that they are not conse number of such selections is							re not consecutive. The
	(A) 284 × 17 Ans : (A)	(B) 2	285 × 17	(C)	284 × 16	(D)	285 × 16
			$\left(\cos\frac{\pi}{2} - \sin\frac{\pi}{2}\right)^n$				
57.	The least positive integer n	such t	that $\begin{pmatrix} -\sin\frac{\pi}{4} & -\sin\frac{\pi}{4} \\ -\sin\frac{\pi}{4} & \cos\frac{\pi}{4} \end{pmatrix}$	is an i	identity matrix of orc	ler 2 is	
	(A) 4 Ans : (B)	(B) 8	3	(C)	12	(D)	16
	Hint : $A^2 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, $A^4 = \begin{pmatrix} -1 & 0 \end{pmatrix}$	-1 0 0 -1	1), $A^8 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \therefore$ cor	rect o	ption is (B)		
58.	Let ρ be a relation defined c	on ℕ,	the set of natural num	ibers,	as		
	$\rho = \left\{ (x, y) \in \mathbb{N} \times \mathbb{N} : 2x + y = \right.$	41} Tł	nen				
	(A) ρ is an equivalence relation (C) ρ is only symmetric relation (C) Ans : (D)	ation lation		(B) (D)	ρ is only reflexive reprint ρ is not transitive	elation	
	Hint : $x\rho y$, $y\rho z \Rightarrow 2x + y =$	41 and	d 2y + z = 41 which d	o not i	mply $2x + z = 41$		
	(1-	+ x) ^a	$(2 + x)^{b}$ 1				
59.	If the polynomial f (x) = $\begin{vmatrix} x \\ (2 - x) \end{vmatrix}$	1 + x) ^b	$\frac{(1+x)^{a}}{1} \frac{(2+x)^{b}}{(1+x)^{a}}$, th	en the	constant term of f(x	.) is	
	(A) $2-3.2^{b}+2^{3b}$	(B) 2	2 + 3.2 ^b + 2 ^{3b}	(C)	2 + 3.2 ^b - 2 ^{3b}	(D)	$2 - 3.2^{b} - 2^{3b}$
	Ans : (A)						
	Hint : f(0) = $\begin{vmatrix} 1 & 2^{b} & 1 \\ 1 & 1 & 2^{b} \\ 2^{b} & 1 & 1 \end{vmatrix}$ =	2-3	3.2 ^b + 2 ^{3b}				
60.	A line cuts the x-axis at A (5, x-axis at P and the y-axis a	, 0) and t Ω_ If	d the y-axis at B $(0,-3)$). A var ? ther	riable line PQ is draw	/n perper	ndicular to AB cutting the
	(A) $x^2 + y^2 - 5x + 3y = 0$			(B)	$x^2 + y^2 + 5x + 3y =$	0	
	(C) $x^2 + y^2 + 5x - 3y = 0$			(D)	$x^2 + y^2 - 5x - 3y = 0$	C	
	Ans : (A)						
	Hint: $(0,-3) \xrightarrow{B} (0,-3) \xrightarrow{A(1)} A(1)$		$\angle ARB = \pi/2$ $\therefore \text{ Locus of R is a with A, B as end p of a diameter, wh } x^2 + y^2 - 5x + 3y =$	circle points ich is = 0			

Mathematics

= ax,

CATEGORY - III (Q66 to Q75)

Carry 2 marks each and one or more option(s) is/are correct. If all correct answers are not marked and also no incorrect answer is market then score = 2 x number of correct answers marked ÷ actual number of correct answers. If any wrong option is marked or if any combination including a wrong option is marked, the answer will condisered wrong, but there is no negative marking for the same and zero marks will be awarded.

66. Let
$$I = \int_{0}^{1} \frac{x^{3} \cos 3x}{2 + x^{2}} dx$$
. Then
(A) $-\frac{1}{2} < I < \frac{1}{2}$ (B) $-\frac{1}{3} < I < \frac{1}{3}$ (C) $-1 < I < 1$ (D) $-\frac{3}{2} < I < \frac{3}{2}$
Ans : (A, B, C, D)
Hint:
67. A particle is in motion along a curve 12y = x³. The rate of change of its ordinate exceeds that of abscissa in
(A) $-2 < x < 2$ (B) $x = \pm 2$ (C) $x < -2$ (D) $x > 2$
Ans : (C, D)
Hint: $12 \frac{dy}{dt} = 3x^{2} \frac{dx}{dt}$
 $\frac{dy}{dt} \ge 1$ $\Rightarrow \frac{3x^{2}}{12} \ge 1$, $\Rightarrow x^{2} \ge 4$, $\Rightarrow x \in (-\infty, -2] \cup [2, \infty)$
68. The area of the region lying above x-axis, and included between the circle $x^{2} + y^{2} = 2ax$ & the parabola $y^{2} = ax$, $a > 0$ is
(A) $8\pi a^{2}$ (B) $a^{2} \left(\frac{\pi}{4} - \frac{2}{3}\right)$ (C) $\frac{16\pi a^{2}}{9}$ (D) $\pi \left(\frac{27}{8} + 3a^{2}\right)$
Ans : (B)
Hint : Area $= \frac{\pi a^{2}}{4} - \frac{2a^{2}}{3}$
69. If the equation $x^{2} - cx + d = 0$ has roots equal to the fourth powers of the roots of $x^{2} + ax + b = 0$, where $a^{2} > 4b$, then the roots of $x^{2} - 4bx + 2b^{2} - c = 0$ will be

(A) both real

- (B) both negative
- (D) one positive and one negative

(C) both positive

Ans : (A, D)

Hint: $x^2 - 4bx + 2b^2 - c = 0$ let α_1 , β_1 be roots $\alpha_1, \beta_1 = 2b^2 - c$ $= 2b^2 - (a^4 - 4a^2b + 2b^2)$ $= a^{2}(4b - a^{2}) < 0$ Hence one positive and one negative

WB,	WBJEE - 2018 (Answers & Hint) Mathematics							
70.	On the occasion of Dipawali festival each sutdent of a class sends greeting cards to others. If there are 20 students in the class, the number of cards sends by students is							
	(A) ²⁰ C ₂	(B) ²⁰ P ₂	(C)	$2 \times {}^{20}C_2$	(D) $2 \times {}^{20}P_2$			
	Ans : (C, B)							
	Hint: ${}^{20}C_2 \times 2$							
71.	In a third order matrix A, ϵ	a, denotes the elem [,]	ent in the i-th row	and j-th columr	۱.			
	If $a_{ii} = 0$ for $i = j$	ij		·				
	= 1 for i > j							
	= –1 for i < j							
	Then the matrix is							
	(A) skew symmetric		(B)	symmetric				
	(C) not invertible		(D)	non-singular				
	Ans : (A, C)							
	Hint : $a_{ij} = -a_{ji}$	ow cymmetric						
72.	The area of the triangle for	rmed by the intersec	ction of a line para	llel to x-axis and	passing through P(h, k), with the lines			
	$y = x$ and $x + y = 2$ is h^2 .	The locus of the po	oint P is					
	(A) $x = y - 1$	(B) $x = -(y - 1)$	(C)	x = 1 + y	(D) $x = -(1 + y)$			
	Ans : (A, B)							
	Hint :B (2-k, k)	P(h, k) A (k, k) C (1, 1)	y = k					
	Area ($\triangle ACB$) = h ²							
	$\Rightarrow \frac{1}{2} \times \sqrt{2(k-1)^2} \times \sqrt{2(k-1)^2} = \frac{1}{2} \times \sqrt{2(k-1)^2} \times \sqrt{2(k-1)^2} = \frac{1}{2} \times \sqrt{2(k-1)^2} \times \sqrt{2(k-1)^2} = \frac{1}{2} \times \sqrt{2(k-1)^2} \times \sqrt{2(k-1)^2} \times \sqrt{2(k-1)^2} = \frac{1}{2} \times $	$\sqrt{2(k-1)^2} = h^2$						
	$\Rightarrow 4(k-1)^2 = 4h^2$							
	\Rightarrow y - 1 = ± x							
	\Rightarrow y - x = 1 and y +	x = 1						

73. A hyperbola, having the transverse axis of length 2 sin θ is confocal with the ellipse $3x^2 + 4y^2 = 12$. Its equation is (A) $x^2 \sin^2\theta - y^2 \cos^2\theta = 1$ (B) $x^2 \csc^2\theta - y^2 \sec^2\theta = 1$ $x^2 \csc^2\theta = x^2 + y^2 + \sin^2\theta$ (C) $(x^2 + y^2) \sin^2\theta = 1 + y^2$ (D) Ans:(B) Hint: Focus of Ellipse is (1, 0) For Hyperbola $a_1 = \sin \theta$ and $a_1e_1 = 1 \Rightarrow e_1 = cosec\theta$ \Rightarrow b₁² = a₁² (e₁² - 1) $= \cos^2 \theta$ Equation of Hyperbola is $\frac{x^2}{\sin^2\theta} - \frac{y^2}{\cos^2\theta} = 1$ 74. Let $f(x) = \cos\left(\frac{\pi}{x}\right)$, $x \neq 0$ then assuming k as an integer, (A) f(x) increases in the interval $\left(\frac{1}{2k+1}, \frac{1}{2k}\right)$ (B) f(x) decreases in the interval $\left(\frac{1}{2k+1}, \frac{1}{2k}\right)$ (C) f(x) decreases in the interval $\left(\frac{1}{2k+2}, \frac{1}{2k+1}\right)$ (D) f(x) increases in the interval $\left(\frac{1}{2k+2}, \frac{1}{2k+1}\right)$ Ans: (A, C) **Hint:** $f'(x) = sin\left(\frac{\pi}{x}\right)\left(\frac{\pi}{x^2}\right)$ $f'(x) > 0 \qquad x \in \left(\frac{1}{2k+1}, \frac{1}{2k}\right)$ f'(x) < 0 $x \in \left(\frac{1}{2k+2}, \frac{1}{2k+1}\right)$

75. Consider the function $y = \log_a \left(x + \sqrt{x^2 + 1} \right)$, a > 0, $a \neq 1$. The inverse of the function (A) does not exist (B) is $x = \log_{\frac{1}{2}} \left(y + \sqrt{y^2 + 1} \right)$ (C) is $x = \sinh(y \ln a)$ (D) is $x = \cosh\left(-y \ln \frac{1}{a}\right)$ Ans : (C) Hint : $a^y = x + \sqrt{x^2 + 1}$ $a^{-y} = \sqrt{x^2 + 1} - x$ $x = \frac{a^y - a^{-y}}{2} \Rightarrow x = \sinh(y \ln a)$

